首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spin-state dynamics of a photochromic iron(II) complex and its immobilization on oxide surfaces via phenol anchors
Authors:Philipp Stock  Nicole Spintig  Juliane Scholz  Jan Dirk Epping  Christian Oelsner  Dennis Wiedemann
Institution:1. Institut für Chemie, Technische Universit?t Berlin, Berlin, Germany;2. Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany;3. Department Chemie und Pharmazie, Friedrich-Alexander-Universit?t Erlangen-Nürnberg, Erlangen, Germany
Abstract:This work presents a detailed study of the photo-induced spin-state dynamics of the photochromic iron(II) complex 1, where the metal ion is in the field of a tripodal hexa-imine ligand with protolysable phenol groups. The nature of the complex’s ground state has been identified as a spin singlet by 1H NMR and steady-state UV/vis spectroscopies, and its distorted octahedral structure was analyzed via crystal structure determination. Sub-picosecond and nanosecond time-resolved laser flash photolysis experiments identify the long-lived quintet state of 1 as the selective product of photoexcitation in the UV/vis spectral region. Thermal barriers of spin-state interconversion as a function of solvent and added base are derived from temperature-dependent rates of transient decay. Ground-state recovery is found to be significantly affected by the solvent and is strongly enhanced, in particular, by base-driven solvolysis of the ligand’s phenol groups. Partial spontaneous deprotonation of the phenolic hydroxyl groups of 1 seems to prevail on metal oxide surfaces, i.e. on alumina. Composite materials, like 1 at Al2O3, that retain the characteristic spectral features of the parent iron(II) complex can be readily obtained by wet impregnation of hydrous alumina with solutions of 1.
Keywords:Spin crossover  Laser flash photolysis  Photophysics  Responsive surfaces  Phenols  Hydrogen bonding
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号