首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural properties of D‐mannopyranosyl rings containing O‐acetyl side‐chains
Authors:Toby Turney  Wenhui Zhang  Allen G Oliver  Anthony S Serianni
Abstract:The crystal structures of 1,2,3,4,6‐penta‐O‐acetyl‐α‐d ‐mannopyranose, C16H22O11, and 2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐mannopyranosyl‐(1→2)‐3,4,6‐tri‐O‐acetyl‐α‐d ‐mannopyranosyl‐(1→3)‐1,2,4,6‐tetra‐O‐acetyl‐α‐d ‐mannopyranose, C40H54O27, were determined and compared to those of methyl 2,3,4,6‐tetra‐O‐acetyl‐α‐d ‐mannopyranoside, methyl α‐d ‐mannopyranoside and methyl α‐d ‐mannopyranosyl‐(1→2)‐α‐d ‐mannopyranoside to evaluate the effects of O‐acetylation on bond lengths, bond angles and torsion angles. In general, O‐acetylation exerts little effect on the exo‐ and endocyclic C—C and endocyclic C—O bond lengths, but the exocyclic C—O bonds involved in O‐acetylation are lengthened by ~0.02 Å. The conformation of the O‐acetyl side‐chains is highly conserved, with the carbonyl O atom either eclipsing the H atom attached to a 2°‐alcoholic C atom or bisecting the H—C—H bond angle of a 1°‐alcoholic C atom. Of the two C—O bonds that determine O‐acetyl side‐chain conformation, that involving the alcoholic C atom exhibits greater rotational variability than that involving the carbonyl C atom. These findings are in good agreement with recent solution NMR studies of O‐acetyl side‐chain conformations in saccharides. Experimental evidence was also obtained to confirm density functional theory (DFT) predictions of C—O and O—H bond‐length behavior in a C—O—H fragment involved in hydrogen bonding.
Keywords:saccharide  acetylation  crystal structure  mannopyranose
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号