首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cysteine combined with carbon black as support for electrodeposition of poly (1,8-Diaminonaphthalene): Application as sensing material for efficient determination of nitrite ions
Institution:University Hassan II Casablanca, Faculty of Sciences and Technologies, Laboratory of Materials Membranes and Environment, P.B 146, Mohammedia 20800, Morocco
Abstract:Poly 1,8-Diaminonaphtahlene/cysteine (poly 1,8-DAN/Cys) combined with carbon black (CB) nanoparticles are proposed as an excellent sensor for the detection of nitrite ions. To design the electrocatalyst, a simple approach consisting on drop-casting method was applied to disperse carbon black on the surface of glassy carbon electrode, followed by the immobilization of cysteine on the surface of CB nanoparticles. The electrochemical polymerization of 1,8-Diaminonaphthalene was conducted in acidic medium by using cyclic voltammetry. The prepared hybrid material was denoted poly 1,8-DAN /Cys/CB. Several methods were used to characterize the structural and electrochemical behavior of the reported hybrid material including Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), amperometry and differential pulse voltammetry (DPV). The prepared electrode displayed an outstanding electroactivity towards nitrite ions reflected by an enhancement in the intensity of the current and a decrease of the charge transfer resistance. Poly 1,8-DAN/Cys/CB displayed an excellent sensing performance towards the detection of nitrite with a very low detection limit of 0.25 µM. Two linear ranges of 1–40 µM and 20–210 µM when using amperometry and differential pulse voltammetry (DPV) were obtained respectively. This work highlights the simple preparation of a polymeric film rich in amine and thiol groups for nitrite detection.
Keywords:Nitrite detection  1  8-Diaminonapthalene  Cysteine  Carbon black  Nanohybrid material  Electrochemical sensor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号