首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review
Authors:Nathaniel S GreenAuthor Vitae  Michael L Norton
Institution:Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, WV 25755, United States
Abstract:Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.
Keywords:GFET  graphene field-effect transistor  CVD  chemical vapor deposition  2D  two-dimensional  DNA  deoxyribonucleic acid  SMFS  single molecule force microscopy  ssDNA  single-stranded deoxyribonucleic acid  AFM  atomic force microscopy  dsDNA  double-stranded deoxyribonucleic acid  PDGF  platelet derived growth factor  SAMs  self-assembled monolayers  HOPG  highly ordered pyrolytic graphite  SA  streptavidin  GO  graphene oxide  RIE  reactive ion etching  rGO  reduced graphene oxide  XPS  X-ray photoelectron spectroscopy  NrGO  nitrogen doped graphene oxide  VCNP  conductance neutral point  LOD  limit of detection  GCE  glassy carbon electrode  ppm  parts per million  ppb  parts per billion  MIPK  methyl isopropyl ketone  CMUT  capacitive micromachined ultrasonic transducer  DMMP  dimethyl methylphosphonate  ATP  adenosine triphosphate  TMN  tris magnesium sodium buffer  PBS  phosphate buffered saline  DPV  differential pulse voltammetry  SERS  surface enhanced Raman spectroscopy  FET  field-effect transistor  PA  protective antigen  pI  isoelectric point  PBASE  pyrenebutanoic acid succinimidyl ester  TBA  thrombin binding aptamer  DAN  1  5-diaminonapthalene  VGEF  vascular endothelial growth factor  MES  2-(N-morpholino)ethanesulfonic acid  IgE  immunoglobulin E
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号