首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高导电性和催化活性的Janus-TiNbCO2析氢反应催化材料
引用本文:徐黎黎,任冬燕,赵骁锋,易勇.高导电性和催化活性的Janus-TiNbCO2析氢反应催化材料[J].电化学,2021,27(5):570-578.
作者姓名:徐黎黎  任冬燕  赵骁锋  易勇
作者单位:1.绵阳职业技术学院,材料工程系,四川 绵阳 6210002.西南科技大学,材料科学与工程学院,四川 绵阳 6210103.乌普萨拉大学,物理与天文学系,瑞典 乌普萨拉SE-75120
基金项目:国家自然科学基金项目(12105236)
摘    要:探寻具有高导电性和高催化活性的析氢反应(HER)催化材料一直是可持续能源发展研究中的热点。Ti2C具有表面活性位点多和优良的力学稳定性、导电性等,已成为潜在的制氢催化剂。然而,终端O修饰Ti2C表面,会降低该材料的导电性,进而限制了电子在价带与导带间的输运。本研究通过Nb掺杂,构建双电层Janus-TiNbCO2,并借助VASP软件研究了Janus-TiNbCO2的能带结构、HER性能和HER反应路径过渡态。结果表明,Janus-TiNb-CO2为导体材料,其在应力、氧空位缺陷和H*覆盖度的影响下,均表现出极优异的催化活性,计算获得的最优ΔGH*值为0.02 eV。H*在Janus-TiNbCO2上可能以Heyrovsky路径进行反应,该路径的迁移能势垒为0.23 eV。Janus-TiNbCO2是一种具有HER应用前景的催化材料。

关 键 词:MXene  Janus-TiNbCO2  能带  析氢反应  
收稿时间:2020-11-09

Janus-TiNbCO2 for Hydrogen Evolution Reaction with High Conductivity and Catalytic Activity
Li-Li Xu,Dong-Yan Ren,Xiao-Feng Zhao,Yong Yi.Janus-TiNbCO2 for Hydrogen Evolution Reaction with High Conductivity and Catalytic Activity[J].Electrochemistry,2021,27(5):570-578.
Authors:Li-Li Xu  Dong-Yan Ren  Xiao-Feng Zhao  Yong Yi
Abstract:Exploring the potential hydrogen evolution reaction (HER) catalysts with the high activity and high conductivity has always been a hot spot in the research of renewable energy development. Ti2C, as one of the 2D-MXene, has excellent properties relating to many active sites, mechanical stability, conductivity, etc., and has become a potential HER catalyst. However, the modification of the surface of Ti2C by terminal O will reduce the conductivity, thereby limiting the transport of electrons between the valence band and the conduction band. In this study, an electric double layer Janus-TiNbCO2 was constructed by Nb doping. The band property, HER activity and HER reaction path of Janus-TiNbCO2 are studied by the first-principles calculations. The results show that Nb doping increases the distance between Ti and O atoms, which increases the lattice parameters of Janus-TiNbCO2 comparing with that of Ti2CO2 structure. The Janus-TiNbCO2 structure is stable by calculating the thermodynamic stability at 500 K using AIMD method. The band gap of Ti2CO2 is approximate 0.9 eV. After Nb doping, the orbital hybridization between Nd-3d and O-2p affects the electronic rearrangement of Ti-3d, leading that Janus-TiNbCO2 has the metal band structure. In Janus-TiNbCO2, both Ti and Nb surfaces adsorb H* by O site, where the ΔGH*(@Ti) = -0.55 eV,ΔGH*(@Nb) = 0.02 eV, showing Ti and Nb surfaces have different catalytic activities. Comparing with graphenes, e.g., h-B2O, Pt, and g-C3N4, Janus-TiNbCO2 has better catalytic activity. The charge distribution of Janus-TiNbCO2 near the Fermi level was analyzed by HSE-06 function. The result reveals that O atoms on the Ti surface exhibit charge unsaturation at the Fermi level, while those on Nb surface strong saturation. Moreover, the effects of H* coverage and strains(+2% ~ +4%) on the catalyst activity of Janus-TiNbCO2 are studied. When the H* coverage is low, the optimal ΔGH* of Nb surface is approximate 0.02 eV, while Ti surface has an excellent catalytic activity at high H* coverages (θ = 7/9, ΔGH* = -0.06 eV). Under the strain action, the H* coverage on surface is not affected. However, strains will reduce the HER activity of Nb surface, and increase the HER activity of Ti surface. Furthermore, oxygen defect is a stable point defect in Janus-TiNbCO2 . Oxygen defect will increase the HER activity of Ti surface and decrease the HER activity of Nb surface. Comparing to the Tafel pathway, the Heyrovsky is a more suitable pathway for the HER, in which the migration barrier of Heyrovsky is 0.23 eV for H* on Nb surface. Janus-TiNbCO2 can be used as a potential HER catalyst.
Keywords:MXene  Janus-TiNbCO2  band  hydrogen evolution reaction  
本文献已被 万方数据 等数据库收录!
点击此处可从《电化学》浏览原始摘要信息
点击此处可从《电化学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号