首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高分散在氮掺杂碳纳米管表面铂纳米粒子的高效甲醇电氧化性能
引用本文:刘晨霞,蔡跃进,王钰,范豪,陈强,吴强,杨立军,王喜章,胡征.高分散在氮掺杂碳纳米管表面铂纳米粒子的高效甲醇电氧化性能[J].无机化学学报,2013,29(18).
作者姓名:刘晨霞  蔡跃进  王钰  范豪  陈强  吴强  杨立军  王喜章  胡征
作者单位:南京大学化学化工学院, 介观化学教育部重点实验室, 南京 210023,南京大学化学化工学院, 介观化学教育部重点实验室, 南京 210023,南京大学化学化工学院, 介观化学教育部重点实验室, 南京 210023,南京大学化学化工学院, 介观化学教育部重点实验室, 南京 210023,南京大学化学化工学院, 介观化学教育部重点实验室, 南京 210023,南京大学化学化工学院, 介观化学教育部重点实验室, 南京 210023,南京大学化学化工学院, 介观化学教育部重点实验室, 南京 210023,南京大学化学化工学院, 介观化学教育部重点实验室, 南京 210023,南京大学化学化工学院, 介观化学教育部重点实验室, 南京 210023
基金项目:国家自然科学基金(No.21473089,21373108,51571110,21573107)和常州市科技计划(No.CE20130032)资助项目.
摘    要:以氮掺杂碳纳米管(NCNT)为载体,利用掺杂氮原子的锚定作用,通过微波辅助乙二醇还原法方便地将Pt纳米粒子高分散地固载于NCNT表面,制得了Pt/NCNT系列催化剂,对催化剂制备规律、电催化甲醇氧化反应(MOR)性能及构效关系开展了系统深入的研究。结果表明,随Pt负载量在18.2%~58.7%(w/w,下同)范围增加,Pt纳米粒子的粒径在2.2~3.7 nm范围相应地逐渐增大。单位质量催化剂的MOR催化活性先增加后急剧减小,在负载量为47.8%时达到最大。Pt的质量比活性在中等负载量(27.6%~47.8%)区间出现高值平台。该变化规律源于Pt纳米粒子的MOR催化活性在3 nm前后的明显差异,即<3 nm时活性差,>3 nm时活性优异。高负载量(58.7%)时活性的急剧下降源于Pt纳米粒子因团聚引起的Pt利用率的降低。

关 键 词:直接甲醇燃料电池  甲醇氧化    纳米粒子  氮掺杂碳纳米管
收稿时间:2017/5/18 0:00:00
修稿时间:2017/7/4 0:00:00

High-Efficiency Pt Catalyst Supported on Nitrogen-Doped Carbon Nanotubes for Methanol Electrooxidation
IU Chen-Xi,CAI Yue-Jin,WANG Yu,FAN Hao,CHEN Qiang,WU Qiang,YANG Li-Jun,WANG Xi-Zhang and HU Zheng.High-Efficiency Pt Catalyst Supported on Nitrogen-Doped Carbon Nanotubes for Methanol Electrooxidation[J].Chinese Journal of Inorganic Chemistry,2013,29(18).
Authors:IU Chen-Xi  CAI Yue-Jin  WANG Yu  FAN Hao  CHEN Qiang  WU Qiang  YANG Li-Jun  WANG Xi-Zhang and HU Zheng
Institution:Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China and Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Abstract:Nitrogen-doped carbon nanotubes (NCNT) with N-content of 3%~5%(w/w) and specific surface area of 235 m2·g-1 were used as support for the immobilization of Pt nanoparticles. Pt nanoparticles were highly dispersed on NCNT without needing pre-modification of the support by taking advantage of the inherent chemical activity of NCNT arising from the N-incorporation. A series of Pt/NCNT catalysts with the loadings of 18.2%~58.7%(w/w, the same below) were conveniently prepared via the microwave-assisted polyol reduction. With increasing Pt loading, the average sizes of Pt nanoparticles increase slightly from 2.2 to 3.7 nm. The mass activity for MOR first increases and reaches the maximum at Pt loading of 47.8%, then decreases dramatically, while the activity based on the Pt mass presents a high-value platform in the Pt-loading range of 27.6%~47.8%. Such a changing tendency is well correlated with the remarkable difference of MOR activity for Pt nanoparticles with the sizes smaller and larger than 3 nm, respectively. The dramatic activity deterioration for the catalyst with high Pt-loading of 58.7% comes from the serious agglomeration of Pt nanoparticles, leading to poor Pt utilization.
Keywords:direct methanol fuel cell  methanol oxidation  platinum  nanoparticles  nitrogen-doped carbon nanotubes
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号