首页 | 本学科首页   官方微博 | 高级检索  
     检索      

H2分子在LaFeO3表面吸附的第一性原理研究
引用本文:陈玉红,潘昌昌,张梅玲,元丽华,张材荣,康龙,罗永春.H2分子在LaFeO3表面吸附的第一性原理研究[J].无机化学学报,2013,29(18).
作者姓名:陈玉红  潘昌昌  张梅玲  元丽华  张材荣  康龙  罗永春
作者单位:兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050;兰州理工大学理学院, 兰州 730050,兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050;兰州理工大学理学院, 兰州 730050,兰州理工大学理学院, 兰州 730050,兰州理工大学理学院, 兰州 730050,兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050;兰州理工大学理学院, 兰州 730050,兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050,兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
基金项目:国家自然科学基金(No.51562022)、省部共建有色金属先进加工与再利用国家重点实验室开放基金(No.SKLAB02014004)、甘肃省高校基本科研业务费项目(No.05-0342)、兰州市科技项目(No.2011-1-10)和兰州理工大学博士基金(No.BS200901)资助。
摘    要:基于密度泛函理论的第一性原理方法,通过计算表面能确定LaFeO3(010)表面为最稳定的吸附表面,研究了H2分子在LaFeO3(010)表面的吸附性质。LaFeO3(010)表面存在LaO和FeO2两种终止表面,但吸附主要发生在FeO2终止表面,由于LaFeO3(010)表面弛豫的影响,使得凹凸不平的表面层增加了表面原子与H原子的接触面积,表面晶胞的纵向体积增加约2.5%,有利于H原子向晶体内扩散。研究发现,H2分子在LaFeO3(010)表面主要存在3种化学吸附方式:第一种吸附发生在O-O桥位,2个H原子分别吸附在2个O原子上,形成2个-OH基,这是最佳吸附位置,此时H原子与表面O原子的作用主要是H1s与O2p轨道杂化作用的结果,H-O之间为典型的共价键。H2分子的解离能垒为1.542 eV,说明表面需要一定的热条件,H2分子才会发生解离吸附;第二种吸附发生在Fe-O桥位,1个H原子吸附在O原子上形成1个-OH基,另一个H原子吸附在Fe原子上形成金属键;第三种吸附发生在O顶位,2个H原子吸附在同一个O原子上,形成H2O分子,此时H2O分子与表面形成物理吸附,H2O分子逃离表面后容易形成氧空位。此外,H2分子在LaFeO3(010)表面还可以发生物理吸附。

关 键 词:密度泛函理论  LaFeO3  表面吸附  H2分子

First Principles Study on the Adsorption of H2 Molecules on LaFeO3 Surface
CHEN Yu-Hong,PAN Chang-Chang,ZHANG Mei-Ling,YUAN Li-Hu,ZHANG Cai-Rong,KANG Long and LUO Yong-Chun.First Principles Study on the Adsorption of H2 Molecules on LaFeO3 Surface[J].Chinese Journal of Inorganic Chemistry,2013,29(18).
Authors:CHEN Yu-Hong  PAN Chang-Chang  ZHANG Mei-Ling  YUAN Li-Hu  ZHANG Cai-Rong  KANG Long and LUO Yong-Chun
Institution:State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;School of Science, Lanzhou University of Technology, Lanzhou 730050, China,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;School of Science, Lanzhou University of Technology, Lanzhou 730050, China,School of Science, Lanzhou University of Technology, Lanzhou 730050, China,School of Science, Lanzhou University of Technology, Lanzhou 730050, China,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;School of Science, Lanzhou University of Technology, Lanzhou 730050, China,State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China and State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
Abstract:Based on the first principles calculations, the adsorption properties of H2 molecules on LaFeO3(010) surface are studied after the (010) surface was confirmed as the most stable surface. LaFeO3(010) surface consists of LaO and FeO2 terminated surfaces, but the adsorption mainly occurs on the FeO2 terminated surface. Due to the surface relaxation, the contact area on the uneven surface lay between surface atoms and H atoms increased, and resulted into about 2.5% increase of the longitudinal volume of the unit cell surface which is beneficial to the H atoms diffusion within the crystal. The results indicate that, there are three kinds of chemical adsorption modes of H2 molecules on the surface of LaFeO3(010):The best adsorption mode is that two H atoms are adsorbed to the two surface O atoms respectively, forming two -OH groups. At this position, the typical covalent bonds between H and surface O formed through the orbital hybridization of H1s and O2p. The energy barrier of H2 molecules dissociation is about 1.542 eV, indicating that the dissociative adsorption can be occurred only under certain thermal condition. The second mode is that one H atom adsorbed on the surface O atom, forming an -OH group, while the other H atom is adsorbed to the Fe atoms, forming a metal bond. The third mode is that two H atoms are adsorbed to the same surface O atom to form H2O molecules which is physically adsorbed on the surface, but the surface oxygen vacancies can be easily formed after the H2O molecules escaped from the surface. In addition, H2 molecules also can be physically adsorbed on LaFeO3(010) surface.
Keywords:density functional theory  LaFeO3  surface adsorption  H2 molecules
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号