首页 | 本学科首页   官方微博 | 高级检索  
     检索      

碳酸盐共沉淀法可控制备超高倍率锂离子电池正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2
引用本文:郑卓,滑纬博,吴振国,向伟,钟本和,郭孝东.碳酸盐共沉淀法可控制备超高倍率锂离子电池正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2[J].无机化学学报,2017,33(2):307-314.
作者姓名:郑卓  滑纬博  吴振国  向伟  钟本和  郭孝东
作者单位:四川大学高分子研究所, 成都 610065,四川大学化学工程学院, 成都 610065,四川大学化学工程学院, 成都 610065,成都理工大学材料与化学化工学院, 成都 610065,四川大学化学工程学院, 成都 610065,四川大学化学工程学院, 成都 610065;伍伦贡大学超导与电子材料研究所, 澳大利亚, 伍伦贡2522
基金项目:国家自然科学基金(No.21506133)和四川省科技支撑计划(No.2014GZ0077)资助项目。
摘    要:采用碳酸盐共沉淀法通过调节NH_3·H_2O用量来实现可控制备超高倍率纳米结构LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料。NH_3·H_2O用量会对颗粒的形貌、粒径、晶体结构以及材料电化学性能产生较大的影响。X射线衍射(XRD)分析和扫描电镜(SEM)结果表明,随着NH_3·H_2O用量的降低,一次颗粒形貌由纳米片状逐渐过渡到纳米球状,且nNH_3·H_2O∶(nNi+nCo+nMn)=1∶2样品晶体层状结构最完善、Li~+/Ni~(2+)阳离子混排程度最低。电化学性能测试结果也证实了nNH_3·H_2O∶(nNi+nCo+nMn)=1∶2样品具有最优异的循环稳定性和超高倍率性能。具体而言,在2.7~4.3 V,1C下循环300次后的放电比容量为119 m Ah·g~(-1),容量保持率为81%,中值电压基本无衰减(保持率为97%)。在100C(18 Ah·g~(-1))的超高倍率下,放电比容量还能达到56 m Ah·g~(-1),具有应用于高功率型锂离子电池的前景。此NH_3·H_2O比例值对于共沉淀法制备其他高倍率、高容量的正/负极氧化物材料具有一定的工艺参考价值。

关 键 词:锂离子电池  正极材料  碳酸盐共沉淀法  超高倍率性能
收稿时间:2016/8/12 0:00:00
修稿时间:2016/10/15 0:00:00

Controllable Preparation of Ultra-High Rate LiNi1/3Co1/3Mn1/3O2 Cathode Through Carbonate Co-precipitation Method for Li-Ion Batteries
ZHENG Zhuo,HUA Wei-Bo,WU Zhen-Guo,XIANG Wei,ZHONG Ben-He and GUO Xiao-Dong.Controllable Preparation of Ultra-High Rate LiNi1/3Co1/3Mn1/3O2 Cathode Through Carbonate Co-precipitation Method for Li-Ion Batteries[J].Chinese Journal of Inorganic Chemistry,2017,33(2):307-314.
Authors:ZHENG Zhuo  HUA Wei-Bo  WU Zhen-Guo  XIANG Wei  ZHONG Ben-He and GUO Xiao-Dong
Institution:Polymer Research Institute, Sichuan University, Chengdu 610065, China,School of Chemical Engineering, Sichuan University, Chengdu 610065, China,School of Chemical Engineering, Sichuan University, Chengdu 610065, China,College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610065, China,School of Chemical Engineering, Sichuan University, Chengdu 610065, China and School of Chemical Engineering, Sichuan University, Chengdu 610065, China;Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong NSW 2522, Australia
Abstract:The ultra-high rate nanostructured LiNi1/3Co1/3Mn1/3O2 cathode is controllably prepared by the carbonate co-precipitation method through tailoring the amount of the NH3·H2O. The NH3·H2O has a great effect on morphology, particle size, crystal structure and electrochemical performance. Powder X-ray diffraction (XRD)and scanning electron microscopy (SEM)results indicate that the morphology of primary particle is changed from nano-plate to nano-sphere with the decreasing of the NH3·H2O, and the sample with ratio nNH3·H2O: (nNi+nCo+nMn)=1:2 has the well-ordered-NaFeO2 structure and the lowest cation mixing (Li+/Ni2+). Electrochemical results also confirm that the sample with ratio nNH3·H2O: (nNi+nCo+nMn)=1:2 has the best cycling stability and ultra-high rate capability. Specifically, it delivers a discharge capacity of 119 mAh·g-1 between 2.7 and 4.3 V at 1C after 300 cycles with outstanding capacity retention of 81%, and the mid-point potential retention is 97%. This sample can still deliver a high discharge capacity of 56 mAh·g-1 even at the ultra-high rate 100C (18 mAh·g-1), which has the prospect to be applied in high power lithium ion battery. This nNH3·H2O ratio could provide some valuable reference for synthesizing other high-rate and high-capacity anode/cathode oxides.
Keywords:lithium-ion battery  cathode material  carbonate co-precipitation method  ultra-high rate performance
本文献已被 CNKI 等数据库收录!
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号