首页 | 本学科首页   官方微博 | 高级检索  
     检索      

三(三甲基硅烷)亚磷酸酯添加剂改善高镍三元正极材料的高电压循环性能
引用本文:董庆雨,毛亚云,郭峰,程振杰,董厚才,陈鹏,康拓,吴晓东,沈炎宾,陈立桅.三(三甲基硅烷)亚磷酸酯添加剂改善高镍三元正极材料的高电压循环性能[J].无机化学学报,2019,35(6):1050-1058.
作者姓名:董庆雨  毛亚云  郭峰  程振杰  董厚才  陈鹏  康拓  吴晓东  沈炎宾  陈立桅
作者单位:中国科学技术大学纳米技术与纳米仿生学院;中国科学院苏州纳米技术与纳米仿生研究所;上海大学材料科学与工程学院;中国科学技术大学纳米科学技术学院
基金项目:国家科技部(No.2016YFB0100102)、中国科学院战略性先导专项(No.XDA09010600,XDA09010303)和国家自然科学基金(No.21625304,21733012)资助项目。
摘    要:研究了三(三甲基硅烷)亚磷酸酯(TMSP)添加剂对高镍三元正极材料Li Ni_(0.83)Mn_(0.05)Co_(0.12)O_2(LNMC811)高电压循环性能的影响。结合电化学表征、理论计算、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)等方法研究发现,在高电位(4.5 Vvs Li/Li~+)下,TMSP添加剂能够在LNMC811正极表面被氧化分解,生成一层富含导锂离子性能好的硅酸盐和电化学稳定的无机碳酸锂,且电解液主要分解产物(有机碳酸锂和氟化锂)含量较少的正极固体电解质界面(CEI)膜;分析表明覆盖在正极表面的薄而均匀的CEI膜,能够很好的降低充放电过程的极化电压,隔离电解液和正极的接触,减少电解液的分解,抑制金属离子的溶出,稳定正极晶体结构,使LNMC811材料能够在4.5 V(vs Li/Li~+)高电压循环时仍然保持良好的循环性能和倍率性能。

关 键 词:高镍三元正极材料  三(三甲基硅烷)亚磷酸酯  锂离子电池  高能量密度
收稿时间:2019/1/18 0:00:00
修稿时间:2019/3/14 0:00:00

Tris(trimethylsilane) Phosphite Additive for Improving the High Voltage Cycling Performance of a Nickel-Rich Layered Oxide Cathode Material
DONG Qing-Yu,MAO Ya-Yun,GUO Feng,CHENG Zhen-Jie,DONG Hou-Cai,CHEN Peng,KANG Tuo,WU Xiao-Dong,SHEN Yan-Bin and CHEN Li-Wei.Tris(trimethylsilane) Phosphite Additive for Improving the High Voltage Cycling Performance of a Nickel-Rich Layered Oxide Cathode Material[J].Chinese Journal of Inorganic Chemistry,2019,35(6):1050-1058.
Authors:DONG Qing-Yu  MAO Ya-Yun  GUO Feng  CHENG Zhen-Jie  DONG Hou-Cai  CHEN Peng  KANG Tuo  WU Xiao-Dong  SHEN Yan-Bin and CHEN Li-Wei
Institution:School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China;Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China,Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China;School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China,School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China;Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China,School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China;Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China,Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China;School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China,Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China;Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China,Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China,School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China;Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China,School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China;Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China and Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
Abstract:
Keywords:nickel-rich layered oxide  tris(trimethylsilane) phosphite  lithium ion battery  high energy density
本文献已被 CNKI 等数据库收录!
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号