首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Ni2P@CoP3核壳纳米球的制备、表征及其用于超级电容器性能
引用本文:汪明,蔡园园,杨艺,祝典,张娜娜,汪美芳,李祥子.Ni2P@CoP3核壳纳米球的制备、表征及其用于超级电容器性能[J].无机化学学报,2021,37(9):1633-1641.
作者姓名:汪明  蔡园园  杨艺  祝典  张娜娜  汪美芳  李祥子
作者单位:皖南医学院药学院医用材料合成应用研究所, 芜湖 241002;皖南医学院药学院医用材料合成应用研究所, 芜湖 241002;安徽师范大学分子基材料安徽省重点实验室, 功能固体教育部重点实验室, 芜湖 241000
基金项目:安徽省高校自然科学基金(No.KJ2020A0619)、安徽省自然科学基金(No.2008085ME124)、安徽省重点研发项目(No.202004d07020005)、安徽省高等学校拔尖人才项目(No.gxbjZD2020070)、安徽省学术和技术带头人后备人选学术资助项目(No.2019H227)、功能分子固体教育部重点实验室(No.FMS201917)、分子基材料安徽省重点实验室(No.fzj20006)、校级重点科研项目(WK2019ZF14)和大学生创新创业项目(No.20201036803,S201910368081,S202010368062)资助。
摘    要:利用水热技术先后获得Ni纳米球和Ni@Co(OH)_2海胆状核壳纳米球前驱体,通过高温煅烧法获得NiO@CoO核壳纳米球,再以次磷酸钠为原料,通过高温磷化法最终获得Ni_2P@CoP_3核壳纳米球。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高角度环形暗场像扫描透射电子显微镜(HAADF-STEM)、X射线粉末衍射仪(XRD)、能谱仪(EDS)及X射线光电子能谱(XPS)对产物的形貌、结构和组成进行表征。采用循环伏安(CV)、恒电流充放电(GCD)以及循环稳定性实验探索了电极材料的电化学性能。结果表明,Ni_2P@CoP_3核壳纳米球的直径约为400 nm,由六方系Ni_2P纳米核和立方相CoP_3纳米壳构成。相比单纯的Ni_2P或CoP_3纳米球,Ni_2P@CoP_3核壳纳米球发挥了复合结构的协同效应,更加有利于电解液的质子传递,促进了赝电容反应,表现出更高的比容量、稳定性和更长的循环寿命。

关 键 词:Ni2P@CoP3纳米球  水热技术  核壳结构  超级电容器
收稿时间:2021/3/16 0:00:00
修稿时间:2021/7/15 0:00:00

Synthesis and Characterization of Ni2P@CoP3 Core-Shell Nanospheres for Supercapacitors
WANG Ming,CAI Yuan-Yuan,YANG Yi,ZHU Dian,ZHANG Na-N,WANG Mei-Fang,LI Xiang-Zi.Synthesis and Characterization of Ni2P@CoP3 Core-Shell Nanospheres for Supercapacitors[J].Chinese Journal of Inorganic Chemistry,2021,37(9):1633-1641.
Authors:WANG Ming  CAI Yuan-Yuan  YANG Yi  ZHU Dian  ZHANG Na-N  WANG Mei-Fang  LI Xiang-Zi
Institution:Institute of Synthesis and Application of Medical Materials, College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, China;Institute of Synthesis and Application of Medical Materials, College of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, China;Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Key Laboratory of Functional Molecular Solids, The Ministry of Education, Wuhu, Anhui 241000, China
Abstract:Ni nanospheres and Ni@Co(OH)2 nano-urchin-spheres precursor were successively fabricated with hydrothermal technique, and then the latter were changed into NiO@CoO by high temperature calcination process, and Ni2P@CoP3 core-shell nanospheres were finally obtained using sodium hypophoshpite as raw material by high temperature phosphating process. The morphologies, structures and compositions of the as-obtained products were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), high angle annular dark field-scanning transmission electron microscope (HAADF-STEM), X-ray powder diffractometer (XRD), energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). At the same time, the electrochemical performance of the electrodes were investigated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and cycling stability experiments. The results showed that as-obtained Ni2P@CoP3 core-shell nanospheres with diameter of~400 nm were composed of hexagonal Ni2P nanocore and cubic CoP3 nanoshell. Compared with pure Ni2P or CoP3 nanospheres, Ni2P@CoP3 core-shell nanospheres are more conducive to the mass transfer of electrolyte and promote the pseudo capacitive reaction because of its synergistic effect of composite structure, which shows higher specific capacity, stability and longer cycle life.
Keywords:Ni2P@CoP3 nanospheres  hydrothermal technique  core-shell structure  supercapacitor
本文献已被 CNKI 等数据库收录!
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号