首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structure and optical properties of amorphous silicon oxide thin films with different porosities
Authors:H Rinnert  M Vergnat
Institution:

Laboratoire de Physique des Matériaux (U.M.R. au C.N.R.S. No. 7556), Université Henri Poincaré Nancy 1, B.P. 239, 54506, Vandœuvre-lès-Nancy cedex, France

Abstract:Amorphous silicon oxide thin films were prepared by evaporation of a silicon oxide powder. Samples were prepared under ultrahigh vacuum, under a flow of hydrogen ions or under a molecular hydrogen atmosphere. Two others sets of samples were prepared using deuterium instead of hydrogen. These five groups of samples were then annealed to different temperatures up to 950 °C and were exposed to the ambient air. The samples present different densities and microstructures. The sample prepared under ultrahigh vacuum is dense, hydrogen free and OH-bond free. Samples prepared under atomic hydrogen and deuterium flows contain Si–H and Si–D bonds, respectively, and are OH-bond free. The sample prepared under a molecular hydrogen atmosphere is very similar to that prepared under a molecular deuterium atmosphere. Both samples are porous and contain Si–H bonds and OH-groups coming from the exposure to the air. All the samples show visible photoluminescence attributed to isolated silicon clusters. The photoluminescence intensity increases with thermal annealing post-treatments up to an optimal annealing temperature. This maximum value is equal to 650 °C for the unhydrogenated sample and the sample prepared under an atomic hydrogen flow and to 800 °C for the sample prepared under a molecular hydrogen atmosphere. This difference is correlated to the different microstructures of the samples. Moreover the strongest photoluminescence intensity is obtained for the porous sample.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号