首页 | 本学科首页   官方微博 | 高级检索  
     检索      

线性与非线性流固耦合动力学数值方法的进展及应用
引用本文:邢景棠.线性与非线性流固耦合动力学数值方法的进展及应用[J].力学进展,2016(1):95-139.
作者姓名:邢景棠
摘    要:本文综述了线性与非线性流固耦合问题数值方法的进展及工程应用。讨论了四种数值分析方法:(1)混合有限元–子结构–子区域数值模型,以求解有限域线性流固耦合问题,如流体晃动,声腔–结构耦合,流体中的压力波,化工容器的地震响应,坝水耦合等;(2)混合有限元–边界元数值模型,以求解涉及无限域的线性流固耦合问题,如大型浮体承受飞机降落冲击,船舰的炮击回应等;(3)混合有限元–有限差分(体积)数值模型,以求解不涉及破浪和两相分离的非线性流固耦合问题;(4)混合有限元–光滑粒子数值模型,以求解涉及破浪和两相分离的非线性流固耦合问题。文中推荐分区迭代求解过程,以便应用现有的固体及流体求解器,于毎一时间步长分别求解固体及流体的方程,通过耦合迭代收敛,向前推进以达问题求解。文中选用的工程应用例子包含气–液–壳三相耦合,液化天然气船水晃动,人体步行冲击引起的声腔–建筑结构耦合,大型浮体承受飞机降落冲击的瞬态动力回应,涉及破浪和两相分离的气–翼耦合及结构于水上降落的冲击。数值分析结果与可用的实验或计算结果作了比较,以说明所述方法的精度及工程应用价值。文中列出了基于流固耦合的波能采积装置模型,以应用线性系统的共振及非线性系统的周期解原理,有效地采积波能。本文列出了231篇参考文献,以便读者进一步研讨所感兴趣方法。

关 键 词:线性与非线性流固耦合  混合有限元-子结构法  混合有限元-边界元法  混合有限元-有限差分法  混合有限元-光滑粒子法  流体晃动  声腔-结构耦合  破浪模拟  流体中的压力波  液化天然气船/超大浮体-水耦合  波能采积

Developments of numerical metho ds for linear and nonlinear fluid-solid interaction dynamics with applications
Institution:Fluid-Structure Interaction Research Group, Faculty of Engineering&the Environment, University of Southampton, Southampton SO17 1BJ, UK
Abstract:This paper presents a review on some developments of numerical methods for linear and nonlinear fluid-solid interaction (FSI) problems with their applications in engineering. The discussion covers the four types of numerical methods: (1) mixed finite element (FE)-substructure-subdomain model to deal with linear FSI in a finite domain, such as sloshing, acoustic-structure interac-tions, pressure waves in fluids, earthquake responses of chemical vessels, dam-water couplings, etc.; (2) mixed FE-boundary element (BE) model to solve linear FSI with infinite domains, for example, very large floating structure (VLFS) sub ject to airplane landing impacts, ship dynamic response caused by cannon/missile fire im-pacts, etc.;(3) mixed FE-finite difference (FD)/volume (FV) model for nonlinear FSI problems with no separations between fluids and solids and breaking waves;(4) mixed FE-smooth particle (SP) method to simulate nonlinear FSI problems with F-S separations as well as breaking waves. Based on available fluid and solid codes, the partitioned iteration approach is suggested to separately solve their gov-
erning equations in a time step, and then through reaching its convergence in coupling iteration to forward until the problem solved. The selected application examples include air-liquid-shell three phases interactions, liquefield natural gas (LNG) ship-water sloshing; acoustic analysis of air-building interaction system excited by human foot impacts;transient dynamic response of an airplane-VLFS-water interaction system excited by airplane landing impacts; turbulence flow-body interactions; structure dropping down on the water surface with breaking waves, etc. The numerical results are compared with the available experiment or numerical data to demonstrate the accuracy of the discussed approaches and their values for engineering applications. Based on FSI analysis, linear and nonlinear wave energy harvesting devices are listed to use the resonance in a linear system and the periodical solution in a nonlinear system, such as flutter, to effectively harvest wave energy. There are 231 references in the paper, which provides useful resources for readers to further investigate their interesting approaches.
Keywords:linear and nonlinear fluid-solid interactions  mixed FE-substructure method  mixed FE-BE method  mixed FE-FD method  mixed FE-SP method  fluid sloshing
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号