首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Alterations in peristaltic pumping of Jeffery nanoliquids with electric and magnetic fields
Authors:J Prakash  Alok K Ansu  D Tripathi
Institution:1.Department of Mathematics, Srinivasa Ramanujan Center,SASTRA Deemed University,Kumbakonam,India;2.Department of Mechanical Engineering,Manipal University,Jaipur,India;3.Department of Mathematics,National Institute of Technology,Uttarakhand,India
Abstract:The combined effects of electric and magnetic fields on peristaltic flow of Jeffery nanoliquids are analytically investigated. Double-diffusive convection in the asymmetric microchannel is also carried out. The walls of the microchannel are propagating with a finite phase difference in a sinusoidal manner. Rosseland diffusion flux model is employed to examine the thermal radiation effect. The zeta potential on the walls is considered very low to apply Hückel–Debye approximations. The coupled non-linear governing equations are simplified by using dimensional analysis and lubrication theory. The closed form solutions for potential function, nanoparticle fraction field, solute concentration field, temperature field, stream function, and axial velocity are derived under the appropriate boundary conditions. It is noteworthy that the pumping characteristics strongly depend on the magnetic fields, electric fields, electric double layer thickness, Jeffery parameter, thermal radiation and Grashof number. Furthermore, trapping phenomenon is analyzed under the effects of Hartmann number, Jeffrey parameter, Grashof number and Helmholtz–Smoluchowski velocity. The novelty of the present work is the amalgamation of biomimetics (peristaltic propulsion), electro-magneto-hydrodynamics and nanofluid dynamics to produce a smart pump system model for smart drug delivery systems.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号