首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Initial thermo-mechanical post-buckling of beams with temperature-dependent physical properties
Authors:MA Vaz  JCR Cyrino  AC Neves
Institution:Ocean Engineering Program, Federal University of Rio de Janeiro, Brazil
Abstract:The objective of this work is to analyze the elastic buckling and initial post-buckling behavior of slender beams subjected to uniform heating. The beams are assumed to be double-hinged with fixed ends, preventing thermal expansion. Consequently, destabilizing compressive forces arise that may lead to beam buckling. When the temperature is further increased, the beam experiences finite displacements, with the result that the analysis is geometrically non-linear. The modulus of elasticity and the thermal induced strain, key material properties for this problem, are temperature-dependent. Thus, the coefficients of the governing equations are not constant. This suggests the physical non-linearity of the mathematical model. Hence, the analysis is geometrically and physically non-linear. The analysis is sensitive to the beam initial temperature, as the thermal strain is a function of the initial and final temperatures. The material is considered to be linear elastic, and consequently viscoelastic and plastic effects are not taken into account. Furthermore, the beam cross-section properties are assumed to be constant, which is consistent with the small strain formulation. A perturbation method is applied to the governing non-linear differential equations so that the initial post-buckling behavior may be analytically determined when temperatures above the critical temperature are applied to the beam. To illustrate the application of the formulation we present a case study for the aluminum 7075-T6 alloy, a material commonly used in aerospace and naval industries. Nonetheless, it is expected similar behavior for other metallic materials. The curves that define the variation of the modulus of elasticity, the thermal strain and the yield stress with temperature are considered in our analysis. The change in length, reaction forces at the supports and geometric configurations are obtained as a function of temperature and the beam slenderness ratio. The critical buckling loads and temperatures and the initial post-buckling analysis are also calculated in the context of the temperature-independent physical properties. Our results emphasize the importance of modeling the material's non-linearity if accuracy is required. However, from a practical application point of view results are acceptable if temperature-independent physical properties are employed, especially for large slenderness ratios.
Keywords:Initial post-buckling  Thermo-mechanical post-buckling  Temperature-dependent properties  Beams
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号