首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shear bands in dense metallic granular materials
Authors:N Hu
Institution:Department of Mechanical Engineering, Johns Hopkins University, 104 Latrobe Hall, 3400 N. Charles Street, Baltimore, MD 21218, USA
Abstract:In this paper, the phenomenon of strain localization, i.e., shear banding, in densely distributed metallic assemblies has been studied. A discrete element methodology for analyzing metallic granular materials has been put forward. In this numerical model, elastoplastic contact, as well as friction, rolling resistance and cohesion between spheres, are explicitly taken into account. The calculations reveal that the shear banding mechanism in dense assemblies can be thought as an instability triggered by initial imperfections. Within a band, the motion, deformation and rearrangement of spheres soften the resistance of the aggregate, as these mechanisms create additional geometric imperfections. Additionally, the simulations showed that the shear-band width does not change conclusively with the friction, rolling resistance and plasticity parameters. However, cohesive strength, even in small amounts, drastically increased the shear-band width. Finally, the shear-band thickness and inclination angles are strongly dependent on the degree of initial imperfection. Whereas for a perfect assembly the shear band inclinations were consistently around 60°, more heterogeneous assemblies lead to shear band angles closer to the continuum mechanics solution, which is 45°. This was found to be in agreement with recent experimental observations.
Keywords:Shear band  Metallic granular material  Dense packing  Plasticity  Cohesion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号