首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Field fluctuations in a heterogeneous elastic material—an information theory approach
Authors:W Kreher  W Pompe
Institution:Akademie der Wissenschaften der DDR, Zentralinstitut für Festkörperphysik und Werkstofforschung, DDR-8027 Dresden, German Democratic Republic
Abstract:Internal stress and strain fields in disordered elastic solids such as multiphase materials or polycrystals are considered. In order to derive a probability distribution for those random internal fields, the information theory entropy is maximized subject to constraints representing the basic equations of elasticity and certain experimental data. Thus one can find the probability distribution which agrees with all known facts but makes no assertions about the internal fields which cannot be supported by the available information. This approach is in accordance with the formal exact solution of the statistical problem if one has complete microstructural information. In case of incomplete microstructural data, useful approximate solutions can easily be obtained. In particular, the following set of data is sufficiently detailed for the prediction of internal field fluctuations: the average strain, the one-point probability density of the random elastic constants, and the effective (overall) elastic constants. Especially the information supplied by the effective elastic constants plays a major role since it reflects the microstructural topology of the heterogeneous material. One obtains Gaussian probability distributions for stress and strain, which are applied to calculate mean values and fluctuations of stresses in a cemented metal carbide and a zinc polycrystal.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号