首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Convection development in a liquid layer with a free boundary
Authors:V Kh Izakson  V I Yudovich
Institution:(1) Rostov-on-Don
Abstract:In certain calculations of the critical Rayleigh number for a liquid layer with free boundary which is heated from below, the linearization method has been used and it has been assumed that the temperature perturbations disappear at the undisturbed free boundary.Proper linearization shows that the temperature perturbation is proportional to the free surface perturbation, and the latter is proportional to the normal stress perturbation with the proportionality factor F=ugr2/gh3 (g is the free-fall acceleration, ugr is the kinematic viscosity, h is the liquid layer thickness). In §1 we present a formulation of the problem with account for the parameter F; in §2 we consider the linearized equations and the existence of a stability threshold is proved-a positive eigenvalue-and it is established that with an increase in the parameter F/P (P is the Prandtl number) the value of the critical Rayleigh number Ra* decreases; §3 presents the results of a numerical calculation of Ra as a function of the parameter F/P.Convection development in a liquid layer with a free surface on which a given temperature is maintained was studied in 1, 2]. The value R*=1100 found for the critical Rayleigh number agrees well with the experimental value. In the calculations made in 1, 2] the linearization method is used, and it is assumed that the temperature perturbations disappear at the undisturbed free boundary. Strictly speaking, this assumption is not correct.Correct linearization shows that the temperature perturbation is proportional to the perturbation of the free boundary, and the latter is proportional to the normal stress perturbation (see below (2.3)).The problem formulation is presented in §1; §2 deals with the linearized equations and the existence (Theorem 2.1) is demonstrated of a stability threshold—which is a simple positive eigenvalue; §3 presents the results of a numerical calculation of R* as a function of the parameter mgr=F/P.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号