首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An experimental study on fracture mechanical behavior of rock-like materials containing two unparallel fissures under uniaxial compression
Authors:Yan-Hua Huang  Sheng-Qi Yang  Wen-Ling Tian  Wei Zeng  Li-Yuan Yu
Institution:State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract:Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fis-sures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were car-ried out for rock-like material with two unparallel fissures. In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindri-cal model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures (a horizontal fissure and an inclined fissure) were cre-ated by inserting steel during molding the model specimen. Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servo-controlled testing system. The peak strength and Young’s modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0? to 75?. In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process. Moreover, acoustic emission (AE) monitoring technique was also used to obtain the AE evolution characteristic of pre-fissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up:when a new crack was initiated or a crack coalescence occurred, the corresponding axial stress dropped in the axial stress–time curve and a big AE event could be observed simultaneously. Finally, the mechanism of crack propagation under micro-scopic observation was discussed. These experimental results are expected to increase the understanding of the strength fail-ure behavior and the cracking mechanism of rock containing unparallel fissures.
Keywords:Rock-like material  Two unparallel fissures  Mechanical parameters  Crack evolution  Acoustic emission (AE)
本文献已被 CNKI 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号