首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Dynamic interactions of an integrated vehicle–electromagnetic energy harvester–tire system subject to uneven road excitations
摘    要:An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electro-magnetic energy harvesters and four tires subject to uneven road excitations in order to improve the passengers' riding comfort and harvest the lost engine energy due to uneven roads. Following the derived mathematical formulations and the proposed solution approaches, the numerical simulations of this interaction system subject to a continuous sinusoidal road excitation and a single ramp impact are completed. The simulation results are presented as the dynamic response curves in the forms of the frequency spectrum and the time history, which reveals the complex interaction characteristics of the system for vibration reductions and energy harvesting performance. It has addressed the coupling effects on the dynamic characteristics of the integrated system caused by:(1) the natural modes and frequencies of the vehicle;(2) the vehicle rolling and pitching motions;(3) different road exci-tations on four wheels;(4) the time delay of a road ramp to impact both the front and rear wheels, etc., which cannot be tackled by an often used quarter vehicle model. The guide-lines for engineering applications are given. The developed coupling model and the revealed concept provide a means with analysis idea to investigate the details of four energy harvester motions for electromagnetic suspension designs in order to replace the current passive vehicle isolators and to harvest the lost engine energy. Potential further research directions are suggested for readers to consider in the future.

关 键 词:Vibration-energy-harvesters  Electromagnetic  suspensions  Mechanical  electromagnetic  interactions  Vehicle  dynamics  Vibration  isolations

Dynamic interactions of an integrated vehicle–electromagnetic energy harvester–tire system subject to uneven road excitations
Authors:Jing Tang Xing  Zhe Sun  Sulian Zhou  Mingyi Tan
Institution:1. Fluid Structure Interactions Group, FEE, University of Southampton, Southampton SO171BJ, UK;2. Fluid Structure Interactions Group, FEE, University of Southampton, Southampton SO171BJ, UK;College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electro-magnetic energy harvesters and four tires subject to uneven road excitations in order to improve the passengers' riding comfort and harvest the lost engine energy due to uneven roads. Following the derived mathematical formulations and the proposed solution approaches, the numerical simulations of this interaction system subject to a continuous sinusoidal road excitation and a single ramp impact are completed. The simulation results are presented as the dynamic response curves in the forms of the frequency spectrum and the time history, which reveals the complex interaction characteristics of the system for vibration reductions and energy harvesting performance. It has addressed the coupling effects on the dynamic characteristics of the integrated system caused by:(1) the natural modes and frequencies of the vehicle;(2) the vehicle rolling and pitching motions;(3) different road exci-tations on four wheels;(4) the time delay of a road ramp to impact both the front and rear wheels, etc., which cannot be tackled by an often used quarter vehicle model. The guide-lines for engineering applications are given. The developed coupling model and the revealed concept provide a means with analysis idea to investigate the details of four energy harvester motions for electromagnetic suspension designs in order to replace the current passive vehicle isolators and to harvest the lost engine energy. Potential further research directions are suggested for readers to consider in the future.
Keywords:Vibration-energy-harvesters  Electromagnetic suspensions  Mechanical electromagnetic interactions  Vehicle dynamics  Vibration isolations
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号