首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Manufacturing tolerant topology optimization
Authors:Ole Sigmund
Institution:(1) Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Niels Koppel’s Allé, Building 404, 2800 Lyngby, Denmark
Abstract:In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization approach, under- and over-etching is modelled by image processing-based “erode” and “dilate” operators and the optimization problem is formulated as a worst case design problem. Applications of the method to the design of macro structures for minimum compliance and micro compliant mechanisms show that the method provides manufacturing tolerant designs with little decrease in performance. As a positive side effect the robust design formulation also eliminates the longstanding problem of one-node connected hinges in compliant mechanism design using topology optimization.
Keywords:Topology optimization  Robust design  Compliant mechanisms  Manufacturing constraints
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号