首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Surface integral analogy approaches for predicting noise from 3D high-lift low-noise wings
Authors:Hua-Dong Yao  Lars Davidson  Lars-Erik Eriksson  Shia-Hui Peng  Olof Grundestam  Peter E Eliasson
Institution:1. Department of Applied Mechanics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
2. Department of Aeronautics and Systems Technology, Swedish Defence Research Agency (FOI), SE-164 90, Stockholm, Sweden
Abstract:Three surface integral approaches of the acoustic analogies are studied to predict the noise from three conceptual configurations of three-dimensional high-lift low-noise wings. The approaches refer to the Kirchhoff method, the Ffowcs Williams and Hawkings (FW-H) method of the permeable integral surface and the Curle method that is known as a special case of the FW-H method. The first two approaches are used to compute the noise generated by the core flow region where the energetic structures exist. The last approach is adopted to predict the noise specially from the pressure perturbation on the wall. A new way to construct the integral surface that encloses the core region is proposed for the first two methods. Considering the local properties of the flow around the complex object-the actual wing with high-lift devices-the integral surface based on the vorticity is constructed to follow the flow structures. The surface location is discussed for the Kirchhoff method and the FW-H method because a common surface is used for them. The noise from the core flow region is studied on the basis of the dependent integral quantities, which are indicated by the Kirchhoff formulation and by the FW-H formulation. The role of each wall component on noise contribution is analyzed using the Curle formulation. Effects of the volume integral terms of Lighthill’s stress tensors on the noise prediction are then evaluated by comparing the results of the Curle method with the other two methods.
Keywords:Aero-acoustics  High-lift facilities  Surface integral approaches of acoustic analogy
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号