首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys
Authors:Darren J Hartl  George ChatzigeorgiouDimitris C Lagoudas
Institution:Department of Aerospace Engineering, Texas A&M University, 3409 TAMU College Station, TX 77843-3409, USA
Abstract:Shape memory alloys (SMAs) provide an attractive solid-state actuation alternative to engineers in various fields due to their ability to exhibit recoverable deformations while under substantial loads. Many constitutive models describing this repeatable phenomenon have been proposed, where some models also capture the effects of rate-independent irrecoverable deformations (i.e., plasticity) in SMAs. In this work, we consider a topic not addressed to date: the generation and evolution of irrecoverable viscoplastic strains in an SMA material. Such strains appear in metals subjected to sufficiently high temperatures. The need to account for these effects in SMAs arises when considering one of two situations: the exposure of a conventional SMA material (e.g., NiTi) to high temperatures for a non-negligible amount of time, as occurs during shape-setting, or the utilization of new high temperature shape memory alloys (HTSMAs), where the elevated transformation temperatures induce transformation and viscoplastic behaviors simultaneously. A new three-dimensional constitutive model based on established SMA and viscoplastic modeling techniques is derived that accounts for these behaviors. The numerical implementation of the model is described in detail. Several finite element analysis (FEA) examples are provided, demonstrating the utility of the new model and its implementation in assessing the effects of viscoplastic behaviors in shape memory alloys.
Keywords:Shape memory alloy  High temperature shape memory alloy  Constitutive modeling  Viscoplasticity  Finite element analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号