首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bifurcation of a modified railway wheelset model with nonlinear equivalent conicity and wheel–rail force
Authors:Ge  Penghe  Wei  Xiukun  Liu  Jinzhao  Cao  Hongjun
Institution:1.Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing, 100044, People’s Republic of China
;2.State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, 100044, People’s Republic of China
;3.Infrastructure Inspection Research Institute, China Academy of Railway Sciences, Beijing, 100081, People’s Republic of China
;
Abstract:

This paper presents the bifurcation behaviors of a modified railway wheelset model to explore its instability mechanisms of hunting motion. Equivalent conicity data measured from China high-speed railway vehicle are used to modify the wheelset model. Firstly, the relationships between longitudinal stiffness, lateral stiffness, equivalent conicity and critical speed are taken into account by calculating the real parts of the eigenvalues of the Jacobian matrix and Hurwitz criterion for the corresponding linear model. Secondly, measured equivalent conicity data are fitted by a nonlinear function of the lateral displacement rather than are considered as a constant as usual. Nonlinear wheel–rail force function is used to describe the wheel–rail contact force. Based on these modifications, a modified railway wheelset model with nonlinear equivalent conicity and wheel–rail force is set up, and then, some instability mechanisms of China high-speed train vehicle are investigated based on Hopf bifurcation, fold (limit point) bifurcation of cycles, cusp bifurcation of cycles, Neimark–Sacker bifurcation of cycles and 1:1 resonance. In particular, fold bifurcation of cycles can produce a vast effect on the hunting motion of the modified wheelset model. One of the main reasons leading to hunting motion is due to the fold bifurcation structure of cycles, in which stable limit cycles and unstable limit cycles may coincide, and multiple nested limit cycles appear on a side of fold bifurcation curve of cycles. Unstable hunting motion mainly depends on the coexistence of equilibria and limit cycles and their positions; if the most outward limit cycle is stable, then the motion of high-speed vehicle should be safe in a reasonable range. Otherwise, if the initial values are chosen near the most outward unstable limit cycle or the system is perturbed by noises, the high-speed vehicle will take place unstable hunting motion and even lead to serious train derailment events. Therefore, in order to control hunting motions, it may be the easiest way in theory to guarantee the coexistence of the inner stable equilibrium and the most outward stable limit cycle in a wheelset system.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号