首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Precision of Hole-Drilling Residual Stress Depth Profile Measurements and an Updated Uncertainty Estimator
Authors:Olson  M D  DeWald  A T  Hill  M R
Institution:1.Hill Engineering, LLC, 3083 Gold Canal Drive, Rancho Cordova, CA, USA
;2.Department of Mechanical and Aerospace Engineering, University of California, One Shields Avenue, Davis, CA, USA
;
Abstract:Background

Measurement precision and uncertainty estimation are important factors for all residual stress measurement techniques. The values of these quantities can help to determine whether a particular measurement technique would be viable option.

Objective

This paper determines the precision of hole-drilling residual stress measurement using repeatability studies and develops an updated uncertainty estimator.

Methods

Two repeatability studies were performed on test specimens extracted from aluminum and titanium shot peened plates. Each repeatability study included 12 hole-drilling measurements performed using a bespoke automated milling machine. Repeatability standard deviations were determined for each population. The repeatability studies were replicated using a commercially available manual hole-drilling milling machine (RS-200, Micro-Measurements). An updated uncertainty estimator was developed and was assessed using an acceptance criterion. The acceptance criterion compared an expected percentage of points (68%) to the fraction of points in the stress versus depth profile where the measured stresses ± its total uncertainty contained the mean stress of the repeatability studies.

Results

Both repeatability studies showed larger repeatability standard deviations at the surface that decay quickly (over about 0.3 mm). The repeatability standard deviation was significantly smaller in the aluminum plate (max ≈ 15 MPa, RMS?≈?6.4 MPa) than in the titanium plate (max ≈ 60 MPa, RMS?≈?21.0 MPa). The repeatability standard deviations were significantly larger when using the manual milling machine in the aluminum plate (RMS?≈?21.7 MPa), and for the titanium plate (RMS?≈?18.9 MPa).

Conclusions

The single measurement uncertainty estimate met a defined acceptance criterion based on the confidence interval of the uncertainty estimate.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号