首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational and experimental studies of crushing of metallic hemispherical shells
Authors:P K Gupta  N K Gupta
Institution:1. Civil Engineering Department, Indian Institute of Technology, Roorkee, 247667, India
2. Department of Applied Mechanics, Indian Institute of Technology, Delhi, New Delhi, 110016, India
Abstract:Axial compression of aluminium spherical shells of R/t values ranging from 25 to 43 was performed under central loading. Quasi-static tests were conducted on an INSTRON machine (model 1197) of 50 T capacity. Spherical shells were tested to identify their modes of collapse and to study the associated energy absorption capacity. In experiments all the spherical shells were found to collapse due to formation of an axisymmetric inward dimple associated with a rolling plastic hinge. A Finite Element computational model of development of the axisymmetric mode of collapse is also presented. Experimental and computed results of the deformed shapes and their corresponding load–compression and energy–compression curves were presented and compared to validate the computational model. The computed variations of the different strains and stresses were also studied. On the basis of the computational results mechanics of the development of the axisymmetric inward dimple mode of collapse has been presented, analysed and discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号