首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Calculation of capillary jet
Authors:Kenn K Q Zhang
Institution:Department of Physics, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, U.S.A.
Abstract:The Arbitrary Lagrangian Eulerian (ALE) framework coupled with some boundary tracking techniques is proven to be an effective method for simulation of free‐surface flows. In this paper, a special ALE framework is derived with clarification of three velocities, the notion of mesh‐frozen and field‐frozen, and the notion of tentatively inertial coordinates. A weighted integral ALE governing equations are formulated on generic coordinates and discretized with a finite element method and linear implicit time scheme. The system is solved with a discrete operator splitting technique and superposition‐based logistic parallelization. The formulation and implementation are verified through several fixed‐geometry problems and a reasonably good parallel performance is observed. Capillary jet flow is the main problem of the paper and the numerical techniques for boundary tracking are elaborated, which include an indirect boundary tracking of flux method and an iterative direct boundary tracking method. Also, a high‐order compact scheme for dynamic boundary condition and a squeeze technique for kinematic boundary condition are adopted. The axisymmetric jet breakup is studied in detail and numerical results match with the published data very well. Numerical accuracy and sensitivity are studied, including effects of element type, time scheme, compact scheme, and boundary tracking techniques. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:discrete operator splitting  logistic parallelization  capillary  free‐surface  ALE  linear implicit
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号