首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Imaging of an underexpanded nozzle flow by UV laser Rayleigh scattering
Authors:N J Dam  M Rodenburg  R A L Tolboom  G G M Stoffels  P M Huisman-Kleinherenbrink  J J ter Meulen
Institution:(1) University of Nijmegen, Department of Molecular and Laser Physics Toernooiveld, NL-6525 ED Nijmegen, The Netherlands, NL
Abstract: Rayleigh scattering of ultra-violet laser light is applied as a diagnostic tool to record gas density distributions in a supersonic nozzle flow. The output beam of a pulsed ArF excimer laser (λ=193.4 nm) is focussed into a thin light sheet radially intersecting a dry air flow emanating from a circular nozzle. An intensified CCD camera is used to record the Rayleigh scattered light in a direction perpendicular to the light sheet. Since the Rayleigh scattering intensity is directly proportional to the local gas density, this results in two-dimensional gas density distribution maps of radial slices through the flow. Images of the flow density are presented for stagnation pressures between 0.2 and 0.7 MPa (0.1 MPa ≡1 bar), showing the transition from subsonic to supersonic flow and, at higher pressures, the formation of a Mach disk. Density maps can be recorded with single laser pulses, effectively freezing the flow structure on a 20 ns time scale. The diamond pattern, characteristic for underexpanded supersonic nozzle flows, is quantitatively monitored, with the experimental results being in reasonable agreement with predictions from a simplified theoretical model. Received: 25 September 1996/Accepted: 19 May 1997
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号