首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulation of converging cylindrical GPa-range shock waves generated by wire array underwater electrical explosions
Authors:G Bazalitski  V Ts Gurovich  A Fedotov-Gefen  S Efimov  Ya E Krasik
Institution:1. Physics Department, Technion, Haifa, 32000, Israel
Abstract:Results of one-dimensional numerical simulations of the parameters of the converging strong shock wave generated by electrical underwater explosions of a cylindrical wire array with different array radii and different deposited energies are presented. It was shown that for each wire array radius there exists an optimal duration of the energy deposition into the exploding array, which allows one to maximize the shock wave pressure and temperature in the vicinity of the implosion axis. The simulation results agree well with the 130-GPa pressure in the vicinity of the implosion axis that was recently obtained, which strongly indicates the azimuthal symmetry of the converging shock wave at these extreme conditions. Also, simulations showed that using a pulsed power generator with a stored energy of ~200 kJ, the pressure and temperature at the shock wave front reaches ~220 GPa and 1.7 eV at 0.1 mm from the axis of implosion in the case of a 2.5 mm radius wire array explosion. It was found that, in spite of the complicated equation of state of water, the maximum pressure at the shock wave front at radius r can be estimated as P ≈ (P*(r*/r) α , where P* is the known value of pressure at the shock wave front at radius r* ≥ r and α is a parameter that equals 0.62±0.02. A rough estimate of the implosion parameters of the hydrogen target after the interaction with the converging strong shock wave is presented as well.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号