首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct simulation of isolated elliptic vortices and of their radiated noise
Authors:Sébastien Barré  Christophe Bogey  Christophe Bailly
Institution:(1) Laboratoire de Mécanique des Fluides et d’Acoustique, UMR CNRS 5509, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully Cedex, France;(2) Present address: Dassault-Aviation, Aircraft and Stores Engineering Technical Directorate, 78 Quai Marcel Dassault, Cedex 300, 92552 St Cloud Cedex, France
Abstract:The aerodynamic evolution and the acoustic radiation of elliptic vortices with various aspect ratios and moderate Mach numbers are investigated by solving numerically the full compressible Navier–Stokes equations. Three behaviours are observed according to the aspect ratio σ = a/b where a and b are the major and minor semi-axes of the vortices. At the small aspect ratio σ = 1.2, the vortex rotates at a constant angular velocity and radiates like a rotating quadrupole. At the moderate aspect ratio σ = 5, the vortex is initially unstable. However the growth of instability waves is inhibited by the return to axisymmetry which decreases its aspect ratio. The noise level becomes lower with time and the radiation frequency increases. For vortices with larger aspect ratios σ ≥ 6, the return to axisymmetry does not occur quickly enough to stop the growth of instabilities, which splits the vortices. Various mergers are then found to occur. For instance in the case σ = 6, several successive switches between an elliptic state and a configuration of two co-rotating vortices are observed. The present results show that the initial value of the aspect ratio yields the relative weight between the return to axisymmetry which stabilizes the vortex and the growth of instabilities which tends to split it. Moreover the noise generated by the vortices is also calculated using the analytical solution derived by Howe (J. Fluid Mech. 71:625–673, 1975) and is compared with the reference solution provided by the direct computation. This solution is found to be valid for σ = 1.2. An extended solution is proposed for higher aspect ratios. Finally, the pressure field appears weakly affected by the switches between the two unstable configurations in the case σ = 6, which underlines the difficulty to detect the split or the merger of vortices from the radiated pressure. This study also shows that elliptic vortices can be used as a basic configuration of aerodynamic noise generation.
Keywords:Kirchhoff’  s vortex  Vortex sound  Aeroacoustics  Direct numerical simulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号