首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assessment of force models on finite-sized particles at finite Reynolds numbers
Authors:Ruyang LI  Weixi HUANG  Lihao ZHAO  Chunxiao XU
Institution:Applied Mechanics Laboratory(AML), Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Abstract:Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method(IBPM) in the turbulent open-channel flow by direct numerical simulation(DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via the fully-resolved method. The results show that the steady-state resistance only performs well in the streamwise direction, while the fluid acceleration force, the added-mass force, and the shear-induced Saffman lift can effectively compensate for the large-amplitude and high-frequency characteristics of the particle surface forces, especially for the wall-normal and spanwise components. The modified steady-state resistance with the correction effects of the acceleration and the fluid shear can better represent the overall forces imposed on the particles, and it is a preferable choice of the surface force model in the Lagrangian point-particle method.
Keywords:finite-sized particle  immersed boundary projection method (IBPM)  force model  Saffman lift  
本文献已被 CNKI 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号