首页 | 本学科首页   官方微博 | 高级检索  
     检索      


General analytic solution of dynamic response of beams with nonhomogeneity and variable cross-section
Authors:Yeh Kai-yuan  Tong Xiao-hua  Ji Zhen-yi
Institution:1. Lanzhou University, Lanzhou; University of Toronto, Toronto, Canada;2. Zhejiang University, Hangzhou; University of Toronto, Toronto, Canada;3. Anhui Architectural Industry College, Hefei
Abstract:In this paper, a new method, the step-reduction method, is proposed to investigate the dynamic response of the Bernoulli-Euler beams with arbitrary nonhomogeneity and arbitrary variable cross-section under arbitrary loads. Both free vibration and forced vibration of such beams are studied. The new method requires to discretize the space domain into a number of elements. Each element can be treated as a homogeneous one with uniform thickness. Therefore, the general analytical solution of homogeneous beams with uniform cross-section can be used in each element. Then, the general analytic solution of the whole beam in terms of initial parameters can be obtained by satisfying the physical and geometric continuity conditions at the adjacent elements. In the case of free vibration, the frequency equation in analytic form can be obtained, and in the case of forced vibration, a final solution in analytical form can also be obtained which is involved in solving a set of simultaneous algebraic equations with only two unknowns which are independent of the numbers of elements divided. The present analysis can also be extended to the study of the vibration of such beams with viscous and hysteretic damping and other kinds of beams and other structural elements with arbitrary nonhomogeneity and arbitrary variable thickness.
Keywords:nonhomogeneity  variable thickness  Bernoulli-Euler beam  discretization  dynamic response
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号