首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A variational differential quadrature solution to finite deformation problems of hyperelastic shell-type structures: a two-point formulation in Cartesian coordinates
Authors:M FARAJI-OSKOUIE  R ANSARI  M DARVIZEH
Institution:Faculty of Mechanical Engineering, University of Guilan, Rasht 3756, Iran
Abstract:A new numerical approach is presented to compute the large deformations of shell-type structures made of the Saint Venant-Kirchhoff and Neo-Hookean materials based on the seven-parameter shell theory. A work conjugate pair of the first Piola Kirchhoff stress tensor and deformation gradient tensor is considered for the stress and strain measures in the paper. Through introducing the displacement vector, the deformation gradient, and the stress tensor in the Cartesian coordinate system and by means of the chain rule for taking derivative of tensors, the difficulties in using the curvilinear coordinate system are bypassed. The variational differential quadrature (VDQ) method as a pointwise numerical method is also used to discretize the weak form of the governing equations. Being locking-free, the simple implementation, computational efficiency, and fast convergence rate are the main features of the proposed numerical approach. Some well-known benchmark problems are solved to assess the approach. The results indicate that it is capable of addressing the large deformation problems of elastic and hyperelastic shell-type structures efficiently.
Keywords:shell  large deformation  variational differential quadrature (VDQ) technique  seven-parameter shell theory  first Piola Kirchhoff stress tensor and deformation gradient tensor (P-F) formulation  
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号