首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Brownian dynamics simulations of star-branched polymers in dilute solutions in extensional flow
Authors:Yong Min Lee  Yong Lak Joo  
Institution:aSchool of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
Abstract:Using Brownian dynamics (BD) simulations of FENE bead-spring models, the dynamics of star-branched polymers in dilute solutions under extensional flow have been investigated. Studies on star polymers in transient extensional flow reveal that the initial transient stress response at low strains is governed by both the number of arms and the shortest arm. On the other hand, the steady-state behavior of star polymers in elongational flow is limited by the maximum effective “contour” length of the molecules. The distribution of arm extension and birefringence of the star-branched molecule are broader and the mean is shifted to lower values, when compared to equivalent linear systems. As a result, the degree of arm extension at steady-state decreases as the number of arms in the star increases. Both an analysis of individual ensembles in Brownian dynamics simulations and a study of a simple force balance indicate that the constraint imposed on the star arms by the central branch point and contributions from “asymmetric” arm arrangements give rise to overall less extended and oriented star-branched molecules with broader arm extension and birefringence distributions. The results obtained from stress-conformation hysteresis simulation indicate that less-stretched arms exhibit more retarded relaxation, as the number of arms increases in star-branched molecules. The effect of excluded volume (EV) interactions, incorporated through the Lennard–Jones potential, on the dynamics of star polymers in extensional flow appears unimportant.
Keywords:Brownian dynamics  Branched polymers  Extensional flow  Bead-spring model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号