首页 | 本学科首页   官方微博 | 高级检索  
     检索      


3D particle image velocimetry of the flow field around a sphere sedimenting near a wall: Part 1. Effects of Weissenberg number
Institution:1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA;2. Department of Mechanical Engineering, University of Colorado, Denver, CO 80217, USA;3. School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
Abstract:The flow fields surrounding a sphere sedimenting through a liquid near a vertical wall are characterized using 3D stereoscopic particle-image velocimetry (PIV) experiments. Three different fluids, a Newtonian reference fluid, a constant (shear) viscosity Boger fluid, and a shear-thinning elastic fluid, are used to determine the effects of both elasticity and shear-thinning on the flow field. All three fluids have similar zero shear viscosities. The Weissenberg number is manipulated by varying the diameter and the composition of the ball. Significant differences are found for the different types of fluid, demonstrating both the influence of elasticity and shear-thinning on the velocity fields. In addition, the impact of the wall on the flow field is qualitatively different for each fluid. We find that the flow behind the sphere is strongly dependent on the fluid properties as well as the elasticity. Also, the presence of a negative wake is found for the shear-thinning fluid at high Weissenberg number (Wi > 1).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号