首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Three-dimensional extrudate swell experimental and numerical study of a polyethylene melt obeying a memory-integral equation
Institution:1. Laboratoire de Rhéologie, UMR 5520 (CNRS), INPG Grenoble and Université Joseph-Fourier, Domaine Universitaire, BP 53, 38041, Grenoble Cedex 9, France;2. Laboratoire de Rhéologie des Matières Plastiques, Université Jean-Monnet, Faculté des Sciences et Techniques, 23 Rue Paul-Michelon, 42023, Saint-Etienne Cedex, France;1. Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany;2. China Resources Chemical Innovative Materials Co.ltd., Xinyu East Road No.1, 213033, Changzhou, Jiangsu, China;3. IMDEA Materials Institute, c/Eric Kandel 2, 28906, Getafe, Madrid, Spain;4. University of Rostock, Institute of Physics, and Competence Center CALOR, Albert-Einstein-Straße 23-24, 18051, Rostock, Germany;5. Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russian Federation;1. Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany;2. IMDEA Materials Institute, c/Eric Kandel 2, 28906 Getafe, Madrid, Spain;3. University of Rostock, Institute of Physics, Albert-Einstein-Straße 23-24, 18051 Rostock, Germany
Abstract:The present work deals with the experimental and numerical features of the flow of a linear low-density polyethylene melt (LLDPE) at 160°C at the exit of a die of square cross-section. The rheological properties of the fluid are fitted by a Wagner's memory-integral constitutive equation. The characteristics of the extrudate jet are determined by optical means at different flow rates. The stream-tube analysis, already applied to two-dimensional extrudate swell problems involving rate and integral constitutive equations, is considered to simulate the flow field. The method avoids particle tracking problems related to integral models and allows computation of the unknown free surface by considering only a `peripheral stream tube' limited by the wall and the jet surface and an inner stream surface. Those boundary surfaces are determined by considering the conservation equations together with boundary condition equations, solved by the Levenberg–Marquardt optimization algorithm. The method leads to a considerable reduction in the number of degrees of freedom and the storage area. The numerical results are found to be generally consistent with the experimental data and highlight the growing importance of stress peaks due to the singularity at the exit when the flow rate increases.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号