首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Energy-based decomposition of friction drag in turbulent square-duct flows
Abstract:The generation of friction drag in turbulent duct flows has direct connection with statistical quantities and corresponding turbulence dynamics in the duct cross-section. In this study, we generalize the RD identity (Renard and Deck, 2016) to a ‘two-dimensional’ form which we exploit to decompose the mean friction drag in turbulent square-duct flows into contributions associated with viscosity, turbulence and cross-stream convection. The friction Reynolds number of the duct flows ranges from 220 to 2000. The scaling, spatial distribution and local normalization of the contributions to friction are investigated and compared with those in pipe and channel flows. As in other canonical flows, we find logarithmic growth of the turbulent contribution in contrast to the viscous one, the former thus becoming dominant at high enough Reynolds numbers. Whereas cross-stream convection has no net effect on friction, its contribution may be locally comparable to the other two, hence may be responsible for redistribution of friction along the duct perimeter.
Keywords:Turbulent square-duct flow  Friction drag  Cross-stream convection
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号