首页 | 本学科首页   官方微博 | 高级检索  
     检索      

水岩化学作用对黑色页岩的化学损伤及力学劣化试验研究
引用本文:凌斯祥,巫锡勇,孙春卫,廖昕,任勇,李晓宁.水岩化学作用对黑色页岩的化学损伤及力学劣化试验研究[J].实验力学,2016,31(4):511-524.
作者姓名:凌斯祥  巫锡勇  孙春卫  廖昕  任勇  李晓宁
作者单位:1. 西南交通大学地球科学与环境工程学院,四川成都,611756;2. 西南交通大学地球科学与环境工程学院,四川成都611756;西南科技大学土木与建筑学院,四川绵阳621010
基金项目:国家自然科学基金资助项目(41172261, 41472256, 41502269);四川省科技支撑计划资助项目(2012SZ0051);西南交通大学博士创新基金(SWJTU2015-40);轨道交通行业拔尖创新人才项目(SWJTU2012-19)
摘    要:为模拟黑色页岩化学风化中酸性水-页岩化学作用过程,本文对其进行氧化条件下的不同pH值H2SO4溶液的非平衡流动态腐蚀性试验,获得了黑色页岩化学腐蚀前后矿物变化、相对质量损失、次生孔隙率、纵波波速变化及微观结构特征的变化。通过单轴压缩试验,获得黑色页岩在不同浸泡时段的变形和强度特性规律,探讨了酸性水对黑色页岩化学作用的化学损伤和力学劣化的腐蚀效应及机制。研究表明,页岩试件在化学腐蚀后,易溶性矿物成分减小,黏土矿物增加,同时矿物胶结变得松散,矿物边缘变得模糊;页岩试件的相对质量损失与次生孔隙率随pH值减小和浸泡时间的增长而增大,而纵波波速则减小;其力学特性有从脆性破坏向延性破坏转化的趋势,单轴抗压强度和弹性模量有随pH值减小和浸泡时间的增长而减小的趋势。基于次生孔隙率,构建化学损伤变量来描述试件化学-力学损伤演化过程。分析酸性水-页岩化学作用的机理主要为:溶解作用、氧化作用、水解作用及离子交换吸附作用。

关 键 词:黑色页岩  水岩化学作用  化学损伤  力学劣化  腐蚀机制

Experimental Study of Chemical Damage and Mechanical Deterioration of Black Shale Due to Water-Rock Chemical Action
LING Si-xiang,WU Xi-yong,SUN Chun-wei,LIAO Xin,REN Yong and LI Xiao-ning.Experimental Study of Chemical Damage and Mechanical Deterioration of Black Shale Due to Water-Rock Chemical Action[J].Journal of Experimental Mechanics,2016,31(4):511-524.
Authors:LING Si-xiang  WU Xi-yong  SUN Chun-wei  LIAO Xin  REN Yong and LI Xiao-ning
Institution:Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China;Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China;Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China;Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China;Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China;1.Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China; 2.School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
Abstract:In order to simulate the acidic water-rock chemical reaction process in chemical weathering of black shale, corrosion experiment was carried out by soaking black shale into H2SO4 acidic water with different pH values, under oxidation and dynamic non-equilibrium flow conditions. The change of mineralogical compositions, the relative qualities loss, the secondary porosity, and the change of longitudinal wave velocity and micro-structural characteristics of black shale before and after chemical corrosion were obtained. Through uniaxial compression experiment, the deformation and strength characteristics of black shale subjected different soaking time were also obtained; therefore, the corrosion effects, such as chemical damage and mechanical deterioration, and its mechanism were explored. Results indicate that (1) after corrosion, the soluble mineralogical composition decreases, but clay mineral composition increases; (2) the mineral cementation becomes loose and mineral edge becomes blur; (3) the relative mass loss and secondary porosity of shale specimens increase with the decrease of pH value and the increase of soaking time, but the velocity of longitudinal wave decreases with the decrease of pH value and the increase of soaking time; (4) the uniaxial compression strength and elastic modulus decrease with the decrease of pH value and the increase of soaking time. Chemical corrosion results in the transformation of brittle failure to ductile failure of black shale. Based on the secondary porosity, chemical damage variable was constructed to describe the evolution of specimens'' chemical damage and mechanical deterioration. After analysis, the main mechanisms of acidic water-black shale chemical reaction include dissolution, oxidation, hydrolysis, and ion exchange adsorption.
Keywords:black shale  water-rock chemical action  chemical damage  mechanical deterioration  corrosion mechanism
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《实验力学》浏览原始摘要信息
点击此处可从《实验力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号