首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Liner wrinkling and collapse of bi-material pipe under bending
Institution:Research Center for Mechanics of Solids, Structures & Materials, WRW 110, The University of Texas at Austin, Austin, TX 78712, United States
Abstract:Lining internally a carbon steel pipe with a thin layer of corrosion resistant material is an economical method for protecting offshore tubulars from the corrosive ingredients of hydrocarbons. In applications involving severe plastic bending, such as in the reeling installation process, the liner can detach from the outer pipe and develop large amplitude buckles that compromise the flow. This paper outlines a numerical framework for establishing the extent to which lined pipe can be bent before liner collapse. The modeling starts with the simulation of the inflation process through which the two tubes develop interference contact pressure. Bending the composite structure leads to differential ovalization and eventually separation of part of the liner from the outer pipe. The unsupported strip of the liner on the compressed side first wrinkles and at higher curvature buckles and collapses in a diamond shaped mode. The sensitivity of the collapse curvature to the various parameters of the problem is studied, and amongst other findings the onset of collapse is shown to be very sensitive to small geometric imperfections in the liner. It is also demonstrated that bending the pipe under modest amounts of internal pressure can delay liner collapse to curvatures that make it reelable.
Keywords:Lined pipe  Bending  Liner wrinkling  Liner collapse  Plastic buckling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号