首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Peeling of an elastic membrane tape adhered to a substrate by a uniform cohesive traction
Authors:Panayiotis Gialamas  Benjamin Völker  Rachel R Collino  Matthew R Begley  Robert M McMeeking
Institution:1. Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, United States;2. Materials Department, University of California, Santa Barbara, CA 93106, United States;3. School of Engineering, University of Aberdeen, King’s College, Aberdeen, Scotland AB24 3UE, United Kingdom;4. INM – Leibniz Institute for New Materials, Campus D22, 66123, Saarbrücken, Germany
Abstract:An analytical model is provided for the peeling of a tape from a surface to which it adheres through cohesive tractions. The tape is considered to be a membrane without bending stiffness and is initially attached everywhere to a flat rigid surface. The tape is assumed to deform in plane strain, and finite deformations in the form of elastic strains are accounted for. The cohesive tractions are taken to be uniform when the tape is within a critical interaction distance from the substrate and then to fall immediately to zero once this critical interaction distance is exceeded. When the distance between the tape and the substrate is zero, repulsive and attractive tractions balance to zero; in this segment, sliding of the tape relative to the substrate is forbidden when we pull the tape up somewhere in the middle, though we permit such sliding when the tape is peeled from one end. In the cohesive zone and where the tape is detached, the interaction of the tape with the substrate is frictionless. Results are given for the force to peel a neo-Hookean tape at any angle up to vertical when one end of it is pulled away from the substrate, as well as for scenarios when the tape is lifted somewhere in the middle to form a V shape being pulled away from the substrate.
Keywords:Adhesion  Peeling  Interface/cohesive energy  Dugdale cohesive zone
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号