首页 | 本学科首页   官方微博 | 高级检索  
     检索      

FCC金属塑性屈服的尺度效应和应变率响应
引用本文:郭宇,庄茁,李晓雁.FCC金属塑性屈服的尺度效应和应变率响应[J].力学学报,2006,38(3):398-406.
作者姓名:郭宇  庄茁  李晓雁
作者单位:清华大学工程力学系,北京,100084
基金项目:国家自然科学基金资助项目(10272060).
摘    要:对纳米尺度单晶铜的剪切变形进行了分子动力学(MD)模拟.模拟结果表明,单晶铜的剪切屈服应力随模型几何尺度的增大而降低,而随着应变率的增大而升高.基于位错形核理论,建立了一个修正的指数法则来描述面心立方(FCC)金属的尺度效应,该法则与较大尺度范围内(从纳米到毫米以上)的数值模拟结果以及实验数据都符合得比较好.另外,MD模拟中发现单晶铜存在一个临界应变率,当施加的应变率小于该值,剪切屈服应力几乎不随应变率变化而变化;当大于该值,剪切屈服应力会随着应变率的增加迅速升高.最后根据模拟的结果建立了单晶铜和单晶镍塑性屈服强度的应变率响应模型.

关 键 词:面心立方金属  尺度效应  率响应  塑性屈服应力
文章编号:0459-1879(2006)03-0398-09
收稿时间:2005-08-08
修稿时间:2005-11-18

Effects of specimen size and apllied strain rate on the plastic flow of FCC metals
Guo Yu,Zhuang Zhuo,Li Xiaoyan.Effects of specimen size and apllied strain rate on the plastic flow of FCC metals[J].chinese journal of theoretical and applied mechanics,2006,38(3):398-406.
Authors:Guo Yu  Zhuang Zhuo  Li Xiaoyan
Institution:Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Abstract:The simple shear molecular dynamics (MD) simulations are performed on single-crystal copper blocks to analyze the size and strain rate effects on face-centered cubic (FCC) metals. It is found that the yield stress decreases with the specimen size and increases with the strain rate. Based on the theory of dislocation nucleation, a modified power law is established to predict the scaling behavior of FCC metals, and it agrees well with the numerical and experimental data ranging all spatial domain from nano-scale to macro-scale. In the atomistic simulation at different applied strain rates, a critical strain rate exists for the single-crystal copper. Below it the yield stress is nearly insensitive to the strain rate, while above it the yield stress increases rapidly with increasing strain rate. Based on the results of the MD simulation, a strain rate model is introduced for the plastic yield stress of FCC metals at nano-scale.
Keywords:FCC metals  size effect  strain rate effect  plastic yield stress
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《力学学报》浏览原始摘要信息
点击此处可从《力学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号