首页 | 本学科首页   官方微博 | 高级检索  
     检索      

增材制造316钢高周疲劳性能的微观力学研究
引用本文:朱继宏,曹吟锋,翟星玥,艾德·穆尼,张卫红.增材制造316钢高周疲劳性能的微观力学研究[J].力学学报,2021,53(12):3181-3189.
作者姓名:朱继宏  曹吟锋  翟星玥  艾德·穆尼  张卫红
作者单位:*.西北工业大学航宇材料结构一体化设计与增材制造装备技术国际联合研究中心, 西安 710072
基金项目:国家自然科学基金资助项目(12032018, 51790171, 11802243)
摘    要:由于增材制造逐层累积的工艺特点, 其成形材料力学性能往往不同于传统减材制造材料. 在航空航天、核工业以及医疗领域中, 对增材制造材料疲劳性能的研究不足导致其很难作为主承力件使用, 这制约着增材制造技术的进一步推广使用. 本文以增材制造316钢为对象, 通过仿真手段研究其高周疲劳性能, 研究表明循环载荷下滑移带与晶界处的裂纹萌生是增材制造316钢材料发生高周疲劳的主要原因. 根据提出的微观力学模型研究了增材制造316钢的高周疲劳性能, 其中分别使用唯象学晶体塑性理论和弹塑性内聚力模型模拟晶粒和晶界的力学行为. 为了准确评估增材制造316钢的高周疲劳性能, 本文针对于晶粒和晶界分别采用Papadopoulos疲劳准则和一种基于安定性理论的介观疲劳准则同时考虑位错滑移和晶界对疲劳性能的影响. 最后, 为了验证所提微观力学模型的有效性, 本文对比了增材制造316钢和轧制316钢高周疲劳性能的仿真结果. 与实验结果相同, 仿真结果显示增材制造316钢相较于轧制316钢具有更好的高周疲劳性能. 

关 键 词:疲劳    安定性理论    晶体塑性    弹塑性内聚力模型    增材制造    316钢
收稿时间:2021-08-16

MICROMECHANICAL STUDY OF THE HIGH CYCLE FATIGUE PROPERTY OF ADDITIVE-MANUFACTURED 316 STEEL
Institution:*.State IJR Center of Aerospace Design and Additive Manufacturing, Northwestern Polytechnical University, Xi’an 710072, China?.MIIT Lab of Metal Additive Manufacturing and Innovative Design, Northwestern Polytechnical University, Xi’an 710072, China**.IMSIA, ENSTA-Paris, Institut Polytechnique de Paris, Palaiseau 91120, France
Abstract:Due to the layer-by-layer process, the mechanical performance of the additive-manufactured part is often different from that produced by traditionally manufactured process. In the field of the aerospace, nuclear and medicine, additive-manufactured parts are difficult to serve as the main load-bearing structure due to the lack of the study about the fatigue property, which limits the generalizability of additive manufacturing technology. Here, the simulation method is adopted to study the high cycle fatigue property of the additive-manufactured 316 steel. The research results show that the crack initiation at the slip bands and grain boundaries is the main cause of the high cycle fatigue for the additive-manufactured 316 steel. In this paper, a micromechanical model is proposed to study the high cycle fatigue property of AM 316 steel, where the mechanical responses of grains and grain boundaries are calculated by the phenomenological crystal plasticity theory and elastoplastic cohesive zone model, respectively. For fatigue assessment, Papadopoulos fatigue criterion and a shakedown-theory-based fatigue criterion are adopted to consider the effect of dislocation slips and grain boundaries on the fatigue property, respectively. Finally, in order to verify the validity of the proposed micromechanical model, the simulation results of AM and rolled 316 steel are compared. As same as the experimental results, the simulation results show that AM 316 steel has a better fatigue property compared with rolled one. 
Keywords:
点击此处可从《力学学报》浏览原始摘要信息
点击此处可从《力学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号