首页 | 本学科首页   官方微博 | 高级检索  
     检索      

带冷却气流的亥姆霍兹共振器的声类比模型
引用本文:甘振鹏,杨东.带冷却气流的亥姆霍兹共振器的声类比模型[J].力学学报,2022,54(3):577-587.
作者姓名:甘振鹏  杨东
作者单位:南方科技大学工学院力学与航空航天工程系, 广东深圳 518055
基金项目:南方科技大学科研启动经费资助
摘    要:亥姆霍兹共振器(HR)作为典型的被动消声装置,常被安装于航空发动机和燃气轮机的燃烧室上用以吸收噪声进而抑制燃烧热声振荡.在实际应用中,为防止燃烧室内高温气体损坏HR,常引入冷却气流从HR的背部空腔通过其颈部流入燃烧室,以保护HR.该冷却气流的温度一般显著低于燃烧室内的燃气温度.将这样的HR安装到燃烧室上时,该温差可能影...

关 键 词:热声振荡  亥姆霍兹共振器  声类比  消声器  燃烧室
收稿时间:2021-10-31

AN ACOUSTIC ANALOGY MODEL FOR HELMHOLTZ RESONATORS WITH COOLING BIAS FLOW
Institution:Department of Mechanics and Aerospace Engineering, School of Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
Abstract:Helmholtz resonators (HR), as a typical passive muffler device, are often installed in the combustor of aero engines and gas turbines to absorb noise and suppress combustion thermoacoustic oscillations. In practical applications, in order to prevent the high temperature gas in the combustion chamber from damaging the HR, a cooling airflow is often introduced from the back cavity of the HR into the combustor through its neck to protect the HR. The temperature of this cooling airflow is generally significantly lower than the temperature of the gas in the combustor. When such HR is installed on the combustor, the temperature difference may affect the relationship between the sound waves and entropy waves upstream and downstream of the HR in the combustor, and further affect the sound absorption performance of the HR. However, in previous models for studying the influence of HR on thermoacoustic oscillations in the combustor, the influence of this temperature difference is generally ignored. Based on the idea of acoustic analogy, we develop a theoretical model in this paper which can predict the acoustic performance of HR with cooling airflow. This HR is installed in a one-dimensional acoustic duct. The model is based on one-dimensional mass, momentum and energy conservation equations. Under the assumption of no viscous dissipation, ignoring volume forces, all external heat sources and thermal diffusion, we derived for the first time the wave equation with source term in a one-dimensional combustor with Helmholtz resonator with cooling airflow installed on the side wall.The source term on the right side of the equation reflects the effect of the resonator on the one-dimensional sound field in the combustor. It can be seen from this equation that the sound source/sink dissipation caused by the resonator is composed of entropy disturbance and mass disturbance terms. It can be further seen that the entropy disturbance generated by the temperature difference of the resonator will enter the one-dimensional sound wave equation in the combustor in the form of a sound source, significantly changing the effect of HR on the sound field in the combustor near its resonance frequency. By comparing with the existing jump condition model, we verified the accuracy of the model in predicting the effect of HR temperature difference on the sound field in the one-dimensional combustor. 
Keywords:
点击此处可从《力学学报》浏览原始摘要信息
点击此处可从《力学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号