首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetics of electron recombination in a molecular gas expanding into a cavity
Authors:N M Kuznetsov
Abstract:The kinetics of recombination in a diatomic or polyatomic gas dispersing into a cavity is investigated in a model gas with one ionization potential and one electron affinity. In addition to the recombination reaction in triple collisions, which play the most important role in the case of a monatomic gas 1], dissociative recombination, ion-atom charge transfer, and reactions involving negative ions are considered. The qualitative differences in the kinetics of recombination of a molecular gas (in comparison with a monatomic gas) are due to the smallness of the relative electron concentrations at the instant of disturbance of ionization equilibrium and to the important contribution of dissociative recombination reactions and the kinetics of formation and recombination of negative ions.In addition, owing to the greater specific heat of a polyatomic gas and the corresponding lower rate of cooling on dispersion, recombination due to collision of three charged particles is not, as distinct from the case of a monatomic gas, decisive for the asymptotic values of the adiabatic exponent and residual ionization. For this reason the values of the adiabatic exponent can be assigned irrespective of a in the solution of the equations of the kinetics of recombination of diatomic and polyatomic gases. Expressions for the instant of failure of the equilibrium relationship between electrons and, respectively, positive and negative ions are obtained.The relationship between the charged-particle concentration in a gas in ionization nonequilibrium and the time for known values of the reaction rate constants is expressed by quadratures. The values of the rate constants of some ionization processes are known only in order of magnitude. However, available data on rate constants indicate that for practically any initial data for dispersion of the products of explosion or combustion of chemical compounds ionization equilibrium is upset at a time when there is still an equilibrium ratio of concentrations of electrons and negative ions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号