首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Natural Convection Heat Transfer in 2D and 3D Trapezoidal Enclosures Filled with Nanofluid
Authors:P Akbarzadeh  A H Fardi
Institution:1.Faculty of Mechanical and Mechatronics Engineering,Shahrood University of Technology,Shahrood,Iran
Abstract:The purpose of the present study is to investigate the heat transfer performance due to free convection of nanofluids with variable properties inside 2D and 3D channels with trapezoidal cross sections. The governing equations are solved numerically using the finite volume method and the SIMPLER algorithm. In this study, the effect of the nanoparticle volume fraction, Rayleigh number, side wall angles of the trapezoidal section, and axial slope of the 3D channel are examined. The presented results include the average Nusselt number, flow circulation streamlines, and isothermal contours. The heat transfer rate (i.e., Nusselt number) is seen to increase in both 2D and 3D channels with an increase in the Rayleigh number. In 2D trapezoidal enclosures, the Nusselt number decreases with an increase in the nanoparticle volume fraction from zero to 2% and increases if the nanoparticle volume fraction is greater than 2%. In 3D channels, an increase in the axial slope of the channel leads to an increase in the Nusselt number.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号