首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Predictions on momentum,heat and mass transfer in turbulent channel flow with the aid of a boundary layer growth-breakdown model
Authors:R Nijsing
Institution:(1) Ispra, Italien
Abstract:This paper deals with theoretical aspects of momentum, heat and mass transfer in turbulent channel flow and in particular with phenomena occurring close to the wall. The analysis presented involves the use of a boundary-layer growth-breakdown model. Theoretical expressions have been derived predicting heat and mass transfer at smooth surfaces in the fully developed and entrance region and at surfaces provided with ldquoidealrdquo two-dimensional roughness elements. The analysis is restricted to fluids having Prandtl and Schmidt numbers larger than one. Good agreement appears to exist between theoretical predictions and experimental observations.
Zusammenfassung Diese Arbeit behandelt die Theorie der Übertragungsvorgänge von Impuls, Wärme und Stoff in turbulenter Kanalströmung unter besonderer Berücksichtigung der Vorgänge in Wandnähe. Das verwendete Modell beruht auf dem Zusammenbruch der anwachsenden Grenzschicht. Für die ausgebildete Strömung und für den Einlaufbereich bei glatter Wand und bei Oberflächen mit ldquoridealenldquo zweidimensionalen Rauhigkeitselementen werden theoretische Ausdrücke abgeleitet bei Beschränkung auf Prandtl- und Schmidt-Zahlen über Eins. Zwischen den theoretischen Voraussagen und den Versuchsergebnissen scheint gute Übereinstimmung zu herrschen.

Nomenclature a thermal diffusivity m2/s] - c concentration kg/m3] - c p specific heat J/kg °C] - D molecular diffusivity m2/s] - G relative increase in friction factor due to surface roughening - d pipe diameter m] - e height (depth) of roughness element m] - e p+ dimensionless roughness height (depth) 
$$\frac{{e(\tau _{{\text{wr}}} /\varrho )^{1/2} }}{v}$$
- F parameter denoting the ratio 
$$\frac{{\tau _{0{\text{h}}} }}{{\tau _0 }}$$
- f friction factor for smooth surface and isothermal conditions - f h friction factor for heating conditions - f r friction factor for artificially roughened surface - n av average frequency of fluctuations at the wall s–1] - q heat flux W/m2] - q w heat flux at the wall W/m2] - q wr heat flux at roughened wall W/m2] - q wx wall heat flux to growing laminar boundary layer at positionx W/m2] - R ma longitudinal correlation coefficient for mass transfer - R mo longitudinal correlation coefficient for momentum transfer - T temperature °C] - T b bulk temperature of fluid °C] - T 0 fluid temperature at edge of viscous boundary layer (edge of viscous region) °C] - T w wall temperature °C] - T wx wall temperature at positionx for growing laminar boundary layer °C] - t time s] - t 0 characteristic time period associated with boundary layer growth s] - u local axial fluid velocity, at wall distancey, for turbulent flow also denoting the mean velocity at that distance m/s] - u b bulk fluid velocity m/s] - u 0 fluid velocity at edge of viscous boundary layer (edge of viscous region) m/s] - u 0r fluid velocity at edge of viscous region for the case of an artificially roughened wall m/s] - uprime axial fluid velocity fluctuation m/s] - u + dimengionless fluid velocity,u/(tauw/rhov)1/2 - u i + instantaneous value ofu + - u min + minimum value ofu i + - u r + root mean square value of dimensionless axial velocity - u 0 + value ofu + at edge of viscous region - v fluid velocity normal to flow direction and normal to wall m/s] - vprime fluctuation of the velocityv m/s] - x coordinate in flow direction m] - Deltax axial distance interval m] - Deltax + dimensionless distance interval 
$$\frac{{\Delta x(\tau _{\text{w}} /\varrho )^{1/2} }}{v}$$
- x 0 viscous boundary layer growth length m] - x 0 + dimensionless boundary growth length 
$$\frac{{x_0 (\tau _{\text{w}} /\varrho )^{1/2} }}{v}$$
- x r axial dixtance between roughness elements m] - x r + dimensionless distance between roughness elements 
$$\frac{{x_{\text{r}} (\tau _{{\text{wr}}} /\varrho )^{1/2} }}{v}$$
- x h value of viscous boundary growth length for heating conditions m] - y distance from wall m] - y + dimensionless wall distance 
$$\frac{{y(\tau _{\text{w}} /\varrho )^{1/2} }}{v}$$
- y v ldquothicknessrdquo of viscous region m] - y v + dimensionless form ofy v - z u unheated (zero mass transfer) part of elementary viscous boundary layer in entrance region m] - z h heated (mass transfer) part of elementary viscous boundary layer m] - z v lateral extent of elementary viscous boundary layer m] Greek symbols agr heat transfer coefficient defined with respect to bulk fluid temperature W/m2 °C] - agr 0 ldquoviscous regionrdquo heat transfer coefficient W/m2 °C] - agr 0h viscous boundary layer heat transfer coefficient averaged over lengthx 0 for conditions of heating W/m2 °C] - agr 0hh ldquoviscous regionrdquo heat transfer coefficient averaged over lengthx h for conditions of heating W/m2 °C] - agrzeta entrance region heat transfer coefficient at position zeta W/m2 °C - agrzeta,t viscous boundary layer heat transfer coefficient at position zeta and timet W/m2 °C] - beta mass transfer coefficient m/s] - beta av average value of mass transfer coefficient m/s] - beta x mass transfer coefficient for viscous boundary layer at positionx m/s] - beta zeta entrance region mass transfer coefficient at position zeta m/s] - delta thickness of laminar (viscous) boundary layer evaluated atu=1/2u 0 m] - delta max maximum value of boundary layer thickness m] - epsi i turbulent diffusivity for momentum transfer m2/s] - epsi h turbulent diffusivity for heat transfer m2/s] - epsi m turbulent diffusivity for mass transfer m2/s] - Gamma turbulent intensity - lambda thermal conductivity W/m °C] - ngr kinematic viscosity m2/s] - ngr 0 value ofv at edge of viscous region m2/s] - ngr w value ofv at the wall m2/s] - rhov density kg/m3] - tau shear stress N/m2] - tau tx local value of wall shear stress associated with viscous boundary layer growth N/m2] - tau 0 value of wall shear stress averaged over lengthx 0 N/m2] - tau 0r value of tau0 for the case of an artificially roughened wall N/m2] - tau 0h value of tau0 for heating conditions N/m2] - tau h value of wall shear stress for heating conditions, averaged over lengthx h N/m2] - tau w wall shear stress for conditions of turbulent flow N/m2] - tau wh value of tauw for heating conditions N/m2] - zeta dimensionless axial distancex/x 0 in extrance region Dimensionless numbers Nu Nusselt number (agrd/lambda) - Nu x Entrance region Nusselt number at axial positionx - Nu h Nusselt number for heating conditions - Nu r Nusselt number for the case of artificially roughened surface - Pr Prandtl number (v/a) - Re Reynolds number (d u b/v) - Re b Boundary layer Reynolds number (1/2 deltau 0/v) - Re ber Critical value ofRe b - Sh Sherwood number (betad/D) - Sh x entrance region Sherwood number at axial positionx - Sc Schmidt number (v/D)
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号