首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical modeling of incline plate LiBr absorber
Authors:Shahram Karami  Bijan Farhanieh
Institution:(1) School of Mechanical Engineering, Sharif University of Technology, 11155-9567, Tehran, Iran
Abstract:Among major components of LiBr–H2O absorption chillers is the absorber, which has a direct effect on the chillier size and whose characteristics have significant effects on the overall efficiency of absorption machines. In this article, heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled incline plate absorber in the Reynolds number range of 5 < Re < 150 is performed numerically. The boundary layer assumptions are used for the mass, momentum and energy transport equations and the fully implicit finite difference method is employed to solve the governing equations. Dependence of lithium bromide aqueous properties to the temperature and concentration is employed as well as dependence of film thickness to vapor absorption. An analysis for linear distribution of wall temperature condition carries out to investigate the reliability of the present numerical method through comparing with previous investigation. The effect of plate angle on heat and mass transfer parameters is investigated and the results show that absorption mass flux and heat and mass transfer coefficient increase as the angle of the plate increase. The main parameters of absorber design, namely Nusselt and Sherwood numbers, are correlated as a function of Reynolds Number and the plate angle.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号