首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stability of Periodic Solutions¶of Conservation Laws with Viscosity:¶Analysis of the Evans Function
Authors:M Oh  K Zumbrun
Institution:1.Department of Mathematics?Indiana University?Bloomington, IN 47405-4301, USA?e-mail: myoh@indiana.edu?e-mail: kzumbrun@indiana.edu,US
Abstract:Nonclassical conservation laws with viscosity arising in multiphase fluid and solid mechanics exhibit a rich variety of traveling-wave phenomena, including homoclinic (pulse-type) and periodic solutions along with the standard heteroclinic (shock, or front-type) solutions. Here, we investigate stability of periodic traveling waves within the abstract Evans-function framework established by R. A. Gardner. Our main result is to derive a useful stability index analogous to that developed by Gardner and Zumbrun in the traveling-front or -pulse context, giving necessary conditions for stability with respect to initial perturbations that are periodic on the same period T as the traveling wave; moreover, we show that the periodic-stability index has an interpretation analogous to that of the traveling-front or -pulse index in terms of well-posedness of an associated Riemann problem for an inviscid medium, now to be interpreted as allowing a wider class of measure-valued solutionsor, alternatively, in terms of existence and nonsingularity of a local “mass map” from perturbation mass to potential time-asymptotic T-periodic states. A closely related calculation yields also a complementary long-wave stability criterion necessary for stability with respect to periodic perturbations of arbitrarily large period NT, N → ∞. We augment these analytical results with numerical investigations analogous to those carried out by Brin in the traveling-front or -pulse case, approximating the spectrum of the linearized operator about the wave.The stability index and long-wave stability criterion are explicitly evaluable in the same planar, Hamiltonian cases as is the index of Gardner and Zumbrun, and together yield rigorous results of instability similar to those obtained previously for pulse-type solutions; this is established through a novel dichotomy asserting that the two criteria are in certain cases logically exclusive. In particular, we obtain results bearing on the nature and mechanism for formation of highly oscillatory Turing-like patterns observed numerically by Frid and Liu and ?ani? and Peters in models of multiphase flow. Specifically, for the van der Waals model considered by Frid and Liu, we show instability of all periodic waves such that the period increases with amplitude in the one-parameter family of nearby periodic orbits, and in particular of large- and small-amplitude waves; for the standard, double-well potential, this yields instability of all periodic waves.Likewise, for a quadratic-flux model like that considered by ?ani? and Peters, we show instability of large-amplitude waves of the type lying near observed patterns, and of all small-amplitude waves; our numerical results give evidence that intermediate-amplitude waves are unstable as well. These results give support for an alternative mechanism for pattern formation conjectured by Azevedo, Marchesin, Plohr, and Zumbrun, not involving periodic waves.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号