首页 | 本学科首页   官方微博 | 高级检索  
     检索      

低密度流体界面不稳定性大涡模拟
引用本文:王涛,李平,柏劲松,汪兵,陶钢.低密度流体界面不稳定性大涡模拟[J].爆炸与冲击,2013,33(5):487-493.
作者姓名:王涛  李平  柏劲松  汪兵  陶钢
作者单位:中国工程物理研究院流体物理研究所,四川绵阳621999;南京理工大学能源与动力工程学院,江苏南京210094;中国工程物理研究院流体物理研究所,四川绵阳,621999;南京理工大学能源与动力工程学院,江苏南京,210094
基金项目:国家自然科学基金项目(11202195,11072228,11002129)
摘    要:采用拉伸涡亚格子尺度应力模型对湍流输运中的亚格子作用项进行模式化处理,发展了适用于可压多介质黏性流动和湍流的大涡模拟方法和代码MVFT(multi-viscous flow and turbulence)。利用MVFT代码对低密度流体界面不稳定性及其诱发的湍流混合问题进行了数值模拟。详细分析了扰动界面的发展,流场中冲击波的传播、相互作用、湍流混合区边界的演化规律,以及流场瞬时密度和湍动能的分布和发展。数值模拟获得的界面演化图像和流场中波系结构与实验结果吻合较好。三维和二维模拟结果的比较显示,两者得到的扰动界面位置、波系及湍流混合区边界基本一致,只是后期的界面构型有所不同,这也正说明湍流具有强三维效应。

关 键 词:流体力学  界面不稳定性  亚格子尺度应力模型  低密度流体  大涡模拟  湍流混合

Large-eddy simulation of interface instability of low-density fluids
Wang Tao,Li Ping,Bai Jing-song,Wang Bing,Tao Gang.Large-eddy simulation of interface instability of low-density fluids[J].Explosion and Shock Waves,2013,33(5):487-493.
Authors:Wang Tao  Li Ping  Bai Jing-song  Wang Bing  Tao Gang
Institution:1.(1. Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang621999, Sichuan, China;2.School of Energy and Power Engineering, Nanjing University of Science and Technology,Nanjing210094, Jiangsu, China)
Abstract:The subgrid-scale (SGS) turbulence transport terms  were modeled by using the stretched-vortex SGS stress model and a large-eddy simulation (LES) code MVFT was developed to investigate the multi-viscous-flow and turbulence problems. Then the interface instability and its induced turbulent mixing of the low-density fluids were simulated numerically by the MVFT code. The simulated images were compared with the experimental results and the detailed analyses were carried out in the following aspects: the development of the perturbed interfaces, the propagations of the shock waves in the flow field and their interactions, the evolutions of the turbulent mixing zone edges, and the instantaneous density and turbulent kinetic energy of the flow filed. Comparisons show that the obtained numerical images for the interface evolutions and the wave structures in the flow field are consistent with the experimental results. And the three-dimensionally simulated results are in agreement with the two-dimensionally simulated ones, which including the positions of the perturbed interfaces, the waves and the turbulent mixing zone edges. Only the two-dimensional simulated images for the the configurations of the perturbed interfaces in the later stage are different from the three-dimensionally simulated results. At the same time, the numerical simulations explain that the turbulent flows have strong three dimensional effects.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《爆炸与冲击》浏览原始摘要信息
点击此处可从《爆炸与冲击》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号