首页 | 本学科首页   官方微博 | 高级检索  
     检索      

椭圆截面侵彻弹体爆炸特性试验研究
引用本文:戴湘晖,王可慧,周刚,李明,沈子楷,段建,李鹏杰,杨慧,吴海军.椭圆截面侵彻弹体爆炸特性试验研究[J].爆炸与冲击,2023,43(5):112-124.
作者姓名:戴湘晖  王可慧  周刚  李明  沈子楷  段建  李鹏杰  杨慧  吴海军
作者单位:西北核技术研究所,陕西 西安 710024
摘    要:为研究椭圆截面侵彻弹体的爆炸特性,设计并开展了静爆威力外场试验。将质量为255 kg的弹体竖立于木质托弹架上,质心距地面高度为2 m,采用试验引信起爆弹体装药。通过航拍无人机实时拍摄整个爆炸过程,在长轴和短轴方向布置扇形效应钢板以获取破片数量及穿甲率,采用超压传感器测量距弹轴7、10和12 m处的冲击波超压,并对弹体爆炸后的宏观景象以及火球、破片和冲击波超压特性进行了详细分析。结果表明,火球演化形貌与破片散布区域关于弹体长轴和短轴呈对称分布;火球演化过程分为快速成长阶段、高温稳定阶段以及自由扩散阶段,火球尺寸在爆炸后41.7 ms达到最大,短轴和长轴方向的最大尺寸分别为21.86、19.29 m,且火球在长轴方向发生了明显的二次膨胀;短轴方向的破片尺寸小、数量多、穿甲能力强,而长轴方向的破片特性恰好相反;冲击波超压峰值、冲量及速度均随传播距离增大而不断减小。综合试验结果对比分析,认为椭圆截面侵彻弹体的非轴对称结构和非均匀壁厚对爆炸特性影响较大,是造成火球形貌及破片非轴对称分布的根本原因。

关 键 词:椭圆截面侵彻弹体  爆炸特性  火球  破片  冲击波超压
收稿时间:2022-03-03

Experimental study on explosion characteristics of penetrator with elliptical cross-section
Institution:Northwest Institute of Nuclear Technology, Xi’an 710024, Shaanxi, China
Abstract:To study the explosion characteristics of penetrator with elliptical cross-section, a static explosion experiment was designed and carried out. The penetrator with a mass of 255 kg was erected on a wooden cartridge, the centroid height was 2 m from the ground, and the test fuse was used to detonate the penetrator explosive. The aerial drone was used to record the whole explosion process in real time, the sector effecting steel plates were arranged in the major and minor axis directions to obtain the number and perforation rate of fragments, and the shock wave overpressure at the distance of 7, 10 and 12 m from the penetrator axis was measured. The macroscopic scene and the characteristics of fireball, fragment, and shock wave overpressure after explosion are analyzed in detail. Results show that the evolution morphology of the fireball and the fragment distribution area are symmetrically distributed with respect to the major axis and minor axis. The evolution of fireball can be divided into rapid growth stage, high temperature stability stage and free diffusion stage. The fireball size reached its maximum at 41.7 ms after explosion, and the maximum size in the minor axis and major axis directions was 21.86 and 19.29 m, respectively. Besides, the fireball size in the major axis direction had obvious secondary expansion. The fragments in the minor axis were small in size, large in number, and strong in perforation, while the fragments in the major axis had the opposite characteristics. The overpressure peak value, impulse, and velocity of shock wave decrease with the increase of propagation distance. Based on the experimental results, it can be concluded that the non-axisymmetric structure and non-uniform wall thickness of the elliptically cross-sectional penetrator have a great influence on the explosion characteristics, leading to the morphology of the non-axisymmetric distribution of the fireball and fragments.
Keywords:
点击此处可从《爆炸与冲击》浏览原始摘要信息
点击此处可从《爆炸与冲击》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号