首页 | 本学科首页   官方微博 | 高级检索  
     检索      

真实虚拟流方法在多介质可压缩流动模拟中的应用
引用本文:陈宏,朱卫兵,张小彬,孙润鹏,郭金鑫.真实虚拟流方法在多介质可压缩流动模拟中的应用[J].爆炸与冲击,2013,33(1):29-37.
作者姓名:陈宏  朱卫兵  张小彬  孙润鹏  郭金鑫
作者单位:哈尔滨工程大学航天与建筑工程学院,黑龙江哈尔滨,150001;中国航天科工集团三十一研究所高超声速冲压发动机技术重点实验室,北京,100074
基金项目:中央高校基本科研业务费项目(HEUCF100203);高超声速冲压发动机技术重点实验室开放基金项目(20110103006)
摘    要:为了克服原始虚拟流方法(ghost fluid method,GFM)在处理激波与大密度比流体-流体(气-水)界面相互作用时遇到的困难,采用真实虚拟流法(real ghost fluid method,RGFM)处理流体界面附近的虚拟点,结合HLLC(Harten-Lax-Van Leer with contact discontinuities)格式求解Euler方程,采用五阶WENO(weighted essentially nonoscillatory)格式求解level set输运方程。通过一维和二维算例的物质界面捕捉研究,证明RGFM在处理小密度比界面问题时优于GFM,同时RGFM还可用于求解激波与大密度比物质界面相互作用问题。计算表明,将RGFM引入到本文算法中,可精确捕捉到激波与界面(气-气、气-水界面)相互作用的变化细节,包括大密度比界面的剧烈变形和破碎,并具有较高的计算分辨率。

关 键 词:流体力学  真实虚拟流法  HLLC  多介质流  level  set方法

Application of real ghost fluid method to simulation of compressible multi-fluid flows
Chen Hong , Zhu Wei-bing , Zhang Xiao-bin , Sun Run-peng , Guo Jin-xin.Application of real ghost fluid method to simulation of compressible multi-fluid flows[J].Explosion and Shock Waves,2013,33(1):29-37.
Authors:Chen Hong  Zhu Wei-bing  Zhang Xiao-bin  Sun Run-peng  Guo Jin-xin
Institution:1.College of Aerospace and Civil Engineering,Harbin Engineering University, Harbin 150001,Heilongjiang,China; 2.Science and Technology on Scramjet Laboratory,The 31st Research Institute, China Aerospace Science and Industry Corporation,Beijing 100074,China)
Abstract: In order to avoid the difficulties of the original ghost fluid method (GFM) in simulating the interaction between shock wave and material (fluid-fluid, gas-water) interface with large density ratio, the real ghost fluid method (RGFM) was adopted to treat the ghost points near the material interface, the HLLC (Harten-Lax-Van Leer with contact discontinuities) Riemann solver was applied to solve the Euler equations, and the fifth-order weighted essentially nonoscillatory (WENO) scheme was implemented to solve the level set equation. Numerical simulations were carried out for one-dimensional and two dimensional examples, respectively. Simulated results show that the RGFM is superior to the GFM, and the images by the RGFM can display more details of the interaction between shock wave and material interface, which include the distinct deformation and fragmentation of the material interfaces with high density ratios.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《爆炸与冲击》浏览原始摘要信息
点击此处可从《爆炸与冲击》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号